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Investigating Rating Scale Category Utility 

John M. Linacre 
University of Chicago 

Eight guidelines are suggested to aid the analyst in investigating whether rating scales 
categories are cooperating to produce observations on which valid measurement can be 
based. These guidelines are presented within the context of Rasch analysis. They address 
features of rating-scale-based data such as category frequency, ordering, rating-to-measure 
inferential coherence, and the quality of the scale from measurement and statistical 
perspectives. The manner in which the guidelines prompt recategorization or 
reconceptualization of the rating scale is indicated. Utilization of the guidelines is 
illustrated through their application to two published data sets. 

Requests for reprints should be sent to John M. Linacre, MESA Psychometric Labora­
tory, University of Chicago, 5835 S. Kimbark Avenue, Chicago IL 60637, e-mail: 
mesa@uchicago.edu. 
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Introduction 

A productive early step in the analysis of questionnaire and survey data is 
an investigation into the functioning of rating scale categories. Though 
polytomous observations can be used to implement multidimensional sys­
tems (Rasch and Stene, 1967; Fischer, 1995), observations on a rating 
scale are generally intended to capture degrees of just one attribute: "rat­
ing scales use descriptive terms relating to the factor in question" (Stanley 
and Hopkins, 1972, p. 290). This factor is also known as the "latent trait" 
or "variable". The rating scale categorizations presented to respondents 
are intended to elicit from those respondents unambiguous, ordinal indi­
cations of the locations of those respondents along such variables of in­
terest. Sometimes, however, respondents fail to react to a rating scale in 
the manner the test constructor intended (Roberts, 1994). 

Investigation of the choice and functioning of rating scale catego­
ries has a long history in social science. Rating scale categorizations 
should be well-defined, mutually exclusive, univocal and exhaustive 
(Guilford, 1965). An early finding by Rensis Likert (1932) is that differ­
ential category weighting schemes (beyond ordinal numbering) are un­
productive. He proposes the well-known five category agreement scale. 
Nunnally (1967) favors eliminating the neutral category in bi-polar scales, 
such as Likert's, and presenting respondents an even number of catego­
ries. Nunnally (1967, p. 521), summarizing Guilford (1954), also reports 
that "in terms of psychometric theory, the advantage is always with using 
more rather than fewer steps." Nevertheless, he also states that "the only 
exception ... would occur in instances where a large number of steps con­
fused subjects or irritated them." More recently, Stone and Wright (1994) 
demonstrate that, in a survey of perceived fear, combining five ordered 
categories into three in the data increases the test reliability for their sample. 
Zhu et al. (1997) report similar findings for a self-efficacy scale. 

Since the analyst is always uncertain ofthe exact manner in which a 
particular rating scale will be used by a particular sample, investigation 
of the functioning of the rating scale is always merited. In cooperation 
with many other statistical and psycho-linguistic tools, Rasch analysis 
provides an effective framework within which to verify, and perhaps im­
prove, the functioning of rating scale categorization. 

Rasch Measurement Models for Rating Scales 

A basic Rasch model for constructing measures from observations 
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on an ordinal rating scale is (Andrich, 1978) 

(1)log ( Pnik / Pni(k-I) ) := Bn - Di - Fk 

where 
Pnik is the probability that person n, on encountering item i would be 
observed in category k, 
Pni(k-I) is the probability that the observation would be in category k-l, 
Bn is the ability, (attitude etc.), of person n, 
Di is the difficulty of item i, 
Fk is the impediment to being observed in category k relative to cat­
egory k-l, i.e., the kth step calibration, where the categories are num­
bered O,m. 

This and similar models not only meet the necessary and sufficient 
conditions for the construction of linear measures from ordinal observa­
tions (Fischer, 1995), but also provide the basis for investigation of the 
operation of the rating scale itself. The Rasch parameters reflecting the 
structure of the rating scale, the step calibrations, are also known as thresh­
olds (Andrich, 1978). 

The prototypical Likert scale has five categories (Strongly Disagree, 
Disagree, Undecided, Agree, Strongly Agree). These are printed equally 
spaced and equally sized on the response form (see Figure 1). The inten­
tion is to convey to the respondent that these categories are of equal im­
portance and require equal attention. They form a clear progression and 
they exhaust the underlying variable. 

IDisagree I I Und~ided I 3 
Figure 1. Prototypical Likert scale as presented to the respondent. 

From a measurement perspective, the rating scale has a different 
appearance (Figure 2). The rating categories still form a progression and 
exhaust the underlying variable. The variable, however, is conceptually 
infinitely long, so that the two extreme categories are also infinitely wide. 
However strongly a particular respondent "agrees", we can always posit 
one who agrees yet more strongly, i.e., who exhibits more of the latent 
variable. The size of the intermediate categories depends on how they are 
perceived and used by the respondents. Changing the description of the 
middle category from "Undecided" to "Unsure" or "Don't Know" or 
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"Don't Care" will change its meaning psycho-linguistically, and so the 
amount of the underlying variable it represents, its size as depicted in 
Figure 2. In view of the general proclivity of respondents towards social 
conformity, agreeability or mere lethargy, the "agree" option is usually 
more attractive than the "disagree" one. Hence the "agree" category tends 
to represent a wider range of the underlying variable. 

Strongly 
Disagree 

Agree Strongly 
Agree 

- - Latent Variable - ­

Figure 2. Prototypical Likert scale from a measurement perspective. 

Empirically, the observations manifest a stochastic element. The 
analyst's expectation is that the probability of observing each category is 
greatest where that category is modeled to occur on the latent variable, 
but there is always some possibility of observing any category at any point 
on the continuum. Figure 3 shows probability curves for each category in 
accordance with Rasch model specifications (Wright and Masters, 1982, 
p.81). 

0.9 ......................"."..-.-~-...............................................__._.................... 


>- Agree 

O+-~~--~~r---r-~~~~~~-,~~=-~; 
-5 -4 -3 -2 -1 0 2 3 4 5 

Latent Variable 

Figure 3. Category probability curves for 5 category Likert scale. 
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In practice, data do not conform exactly to Rasch model specifica­
tions, or those of any other ideal model. "For problem solving purposes, we 
do not require an exact, but only an approximate resemblance between theo­
retical results and experimental ones." (Laudan, 1977, p. 224). For analyti­
cal purposes, the challenge then becomes to ascertain that the rating scale 
observations conform reasonably closely to a specified model, such as that 
graphically depicted in Figure 3. When such conformity is lacking, the 
analyst requires notification as to the nature of the failure in the data and 
guidance as to how to remedy that failure in these or future data. 

How the variable is divided into categories affects the reliability of 
a test. Mathematically it can be proven that, when the data fit the Rasch 
model, there is one best categorization to which all others are inferior 
(Jansen and Roskam, 1984). Since this best categorization may not be 
observed in the raw data, guidelines have been suggested for combining 
categories in order to improve overall measure quality (Wright and Linacre, 
1992). Fit statistics, step calibrations and other indicators have also been 
suggested as diagnostic aids (Linacre, 1995; Andrich, 1996; Lopez, 1996). 

The Heuristic Analysis of Rating Scale Observations 

At this point we set aside the linguistic aspects of category definitions 
(Lopez, 1996), taking for granted that the categories implement a clearly de­
fined, substantively relevant, conceptually exhaustive ordered sequence. We 
consider solely the numerical information that indicates to what extent the 
data produce coherent raw scores, i.e., raw scores that support the construc­
tion of Rasch measures. The description of the characteristics of an ideal 
rating scale, presented above, suggests an explicit procedure for verifying 
useful functioning and diagnosing malfunctioning. 

) Table 1 

Analysis ofGuilford's (1954) rating scale. 

Category Average Expected OUTFIT Step Category
Label Count % Measure Measure MnSq Calibration Name 

1 4 4% - .85 -.73 .8 - lowest 
2 4 4% -.11 - .57 2.6 - .63 
3 25 24% - .36* - .40 .9 -2.31* 
4 8 8\ - .43* - .22 .5 .84 
5 31 30% - .04 -.03 .8 -1.48* middle 
6 6 6% - .46* .16 4.1 1. 71 
7 21 20% .45 .34 .6 -1 .01 * 
8 3 3\ .74 .49 .5 2.35 
9 3 3% .76 .61 .7 .53* highest 
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Figure 4. Rasch model category probability curves for Guilford's (1954) scale. 

Table 2 

Analysis ofLFS rating scale data. 

Category Average Expeoted OUTFIT Step Coherenoe Soore-to-Meaaure 
Label Count Measure Measure IInSq Calibration II->C C->II ----Zone---­

0 578 -.87 -LOS 1.19 NONE 65115 42'11 -- -1.18 
1 620 .15 .55 .69 - .85 54115 71% -1.18 1.18 
2 852 2.23 2.15 1.46 .85 85115 78'1s 1.18 +­

Consider the Ratings of Creativity (Guilford, 1954), also discussed 
from a different perspective in Linacre (1989). Table 1 contains results 
from an analysis by Facets (Linacre, 1989). The model category charac­
teristic curves are shown in Figure 4. These will be contrasted with the 
"Liking for Science" (LFS) ratings reported in Wright and Masters (1982). 
Table 2 contains results from an analysis by BIGSTEPS (Wright and 
Linacre, 1991). The model category characteristic curves for the LFS data 
are shown in Figure 5. 

Guideline #1: At least 10 observations of each category. 

Each step calibration, Fk, is estimated from the log-ratio of the fre­
quency of its adjacent categories. When category frequency is low, then 
the step calibration is imprecisely estimated and, more seriously, poten­
tially unstable. The inclusion or exclusion of one observation can notice­
ably change the estimated scale structure. 
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Figure 5. Model probability characteristic curves for LFS rating scale. 

For instance, omitting one often observations changes the step cali­
bration by more than .1 logits, (more than .2 logits for one of 5). If each 
item is defined to have its own rating scale, i.e., under partial credit con­
ditions, this would also change the estimated item difficulty by .1Im, when 
there are m+1 categories and so m steps. For many data sets, this value 
would exceed the model standard error of the estimated item difficulty 
based on 100 observations. Consequently, the paradox can arise that a 
sample large enough to provide stable item difficulty estimates for less 
statistically informative dichotomous items (Linacre, 1994) may not be 
sufficiently large for more informative polytomous items. 

Categories which are not observed in the current dataset require spe­
cial attention. First, are these structural or incidental zeros? Structural 
zeros correspond to categories of the rating scale which will never be 
observed. They may be an artifact of the numbering of the observed cat­
egories, e.g., categories "2" and "4" cannot be observed when there are 
only three scale categories and these are numbered" 1", "3" and "5". Or 
structural zeros occur for categories whose requirements are impossible 
to fulfil, e.g., in the 17th Century it was conventional to assign the top 
category to God-level performance. For these structural zeros, the cat­
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egories are simply omitted, and the remaining categories renumbered se­
quentially to represent the only observable qualitative levels of perfor­
mance. 

Incidental zeroes are categories that have not been observed in this 
particular data set. Thus all categories of a 5 category scale cannot be 
seen in just three observations. There are several strategies that avoid 
modifying the data: i) treat those incidental zeroes as structural for this 
analysis, renumbering the categories without them; ii) impose a scale struc­
ture (by anchoring thresholds) that includes these categories; iii) use a 
mathematical device (Wilson, 1991) to keep intermediate zero categories 
in the analysis. 

In the Guilford example (Table 1), category frequency counts as low 
as 3 are observed. When further relevant data cannot be easily obtained, 
one remedy is to combine adjacent categories to obtain a robust structure 
of high frequency categories. Another remedy is to omit observations in 
low frequency categories that may not be indicative of the main thrust of 
the latent variable. Such off-dimension categories may be labeled "don't 
know" or "not applicable". The frequency count column, by itself, sug­
gests that the rarely observed categories, 1,2,4,6,8,9, be combined with 
adjacent categories or their data be omitted. The remaining categories 
would be renumbered sequentially and then the data reanalyzed. 

In the LFS example (Table 2), all category frequency counts are 
large, indicating that locally stable estimates of the rating scale structure 
can be produced. 

Guideline #2: Regular observation distribution. 

Irregularity in observation frequency across categories may signal 
aberrant category usage. A uniform distribution of observations across 
categories is optimal for step calibration. Other substantively meaningful 
distributions include unimodal distributions peaking in central or extreme 
categories, and bimodal distributions peaking in extreme categories. Prob­
lematic are distributions of "roller-coaster" form, and long tails of rela­
tively infrequently used categories. On the other hand, when investigating 
highly skewed phenomena, e.g., criminal behavior or creative genius, the 
long tails of the observation distribution may capture the very informa­
tion that is the goal of the investigation. 

A consideration, when combining or omitting categories, is that the 
rating scale may have a substantive pivot-point, the point at which the sub­
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stantive meaning of the ratings is dichotomized. For instance, when using 
a Likert scale to ask about socially-acceptable propositions, such as "Crime 
should be punished", the pivot point could be between "Strongly Agree", 
and "Agree". For negatively worded propositions, such as "Politicians are 
dishonest", the pivot could be between "Disagree" and "Neutral". 

In Table 1, the frequency distribution is tri-modal with peaks at 3,5, 
and 7, perhaps indicating that the judges are being asked to apply a 9 
category scale to performances that they can only discriminate into three 
levels. Again, remedies include combining adjacent categories or omit­
ting observations in categories, such as "Other", whose measurement im­
plications are dubious. A regular frequency distribution in Table 1 could 
be obtained by combining categories 1,2 and 3, totaling 33, also 4 and 5, 
totaling 39, and then 6, 7, 8, and 9, totaling 33. 

In Table 2, the frequency distribution is unimodal and shows reas­
suringly smooth increases from approximately 380 to 620 (a jump of 240), 
and then from 620 to 850 (a jump of 230). 

Guideline #3: Average measures advance monotonically with category. 

Equation (1) specifies a Rasch measurement model. This is concep­
tualized to generate data in the following fashion: 

B - D. - {F } ==> X . (2)
n 1 k nl 

where 
Xni is the rating observed when person n encountered item i, 
{Fk } is the set of step calibrations for all categories 0, m, 
and other parameters have the meanings assigned in (1). 

Within anyone item or group of items modeled to have the same 
rating scale structure, the {Fk } are constant across observations and may 
be ignored at this point. It is the combination of B nand Di (or their equiva­
lent in any other Rasch model) tha,t is crucial in producing, and then diag­
nosing, the empirical observation, Xni. It is essential to our comprehension 
of the rating scale that, in general, higher measure combinations (Bn - D) 
produce observations in higher categories and vice-versa. Accordingly a 
diagnostic indicator is the average of the measures, (B - D,), across all 

n I 

observations in each category. 

These average measures are an empirical indicator of the context in 
which the category is used. In general, observations in higher categories 
must be produced by higher measures (or else we don't know what a "higher" 
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measure implies). This means that the average measures by category, for 
each empirical set of observations, must advance monotonically up the rat­
ing scale. Otherwise the meaning of the rating scale is uncertain for that 
data set, and consequently any derived measures are of doubtful utility. 

In Table 1, failures of average measures to demonstrate monotonicity 
are flagged by "*". In particular, the average measure corresponding to the 
6 observations in category 6 is -.46, noticeably less than the -.04 for the 31 
observations in category 5. Empirically, category 6 does not manifest higher 
performance levels than category 5. An immediate remedy is to combine 
non-advancing (or barely advancing) categories with those below them, 
and so obtain a clearly monotonic structure. The average measure column 
of Table 2, by itself, suggests that categories 2, 3, and 4 be combined, and 
also categories 5, 6, and 7. Categories 1,8 and 9 are already monotonic. 

In Table 2, the average measures increase monotonically with rating 
scale category from -.87 to .1310gits (a jump of 1.0), and then from .13 to 
2.23 (a jump of 2.2). This advance is empirical confirmation of our inten­
tion that higher rating scale categories indicate more of the latent vari­
able. The advances across categories, however, are uneven. This may be 
symptomatic of problems with the use of the rating scale or may merely 
reflect the item and sample distributions. 

The "Expected Measure" columns in Tables 1 and 2 contain the val­
ues that the model predicts would appear in the "Average Measure" col­
umns, were the data to fit the model. In Table 1, these values are 
diagnostically useful. For category 1, the observed and expected values, 
-.85 and -.73, are close. For category 2, however, the observed value of­
.11 is .4610gits higher than the expected value of .57, and also higher than 
the expected value for category 4. Category 6 is yet more aberrant, with 
an observed average measure less than the expected average measure for 
category 3. The observations in categories 2 and 6 are so contradictory to 
the intended use of the rating scale, that, even on this slim evidence, it 
may be advisable to remove them from this data set. 

In Table 2, the observed average measures appear reasonably close 
to their expected values. 

Guideline #4: OUTFIT mean-squares less than 2.0. 

The Rasch model is a stochastic model. It specifies that a reasonably 
uniform level of randomness must exist throughout the data. Areas within 
the data with too little randomness, i.e., where the data are too predictable, 
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tend to expand the measurement system, making performances appear more 
d~fferent. Areas with excessive randomness tend to collapse the measure­
ment system, making performances appear more similar. Ofthese two flaws, 
excessive randomness, "ndise", is the more immediate threat to the mea­
surement system. 

For the Rasch model, mean-square fit statistics have been defined such 
that the model-specified uniform value of randomness is indicated by 1.0 
(Wright and Panchapakesan, 1969). Simulation studies indicate that values 
above 1.5, i.e., with more than 50% unexplained randomness, are problem­
atic (Smith, 1996). Values greater than 2.0 suggest that there is more unex­
plained noise than explained noise, so indicating there is more misinformation 
than information in the observations. For the outlier-sensitive OUTFIT mean­
square, this misinformation may be confined to a few substantively explain­
able and easily remediable observations. Nevertheless large mean-squares 
do indicate that segments of the data may not support useful measurement. 

For rating scales, a high mean-square associated with a particular 
category indicates that the category has been used in unexpected con­
texts. Unexpected use of an extreme category is more likely to produce a 
high mean-square than unexpected use of a central category. In fact, cen­
tral categories often exhibit over-predictability, especially in situations 
where respondents are cautious or apathetic. 

In Table 1, category 6 has an excessively high mean-square of 4.1. 
It has more than three times as much noise as explained stochasticity. 
From the standpoint of the Rasch model, these 6 observations were highly 
unpredictable. Inspection of the data, however, reveals that only one of 
the three raters used this category, and that it was used in an idiosyncratic 
manner. Exploratory solutions to the misfit problem could be to omit 
individual observations, combine categories or drop categories entirely. 
Category 2, with only 4 observations also has a problematic mean-square 
of 2.1. One solution, based on mean-square information alone, would be 
to omit all observations in categories 2 and 6 from the analysis. 

In Table 2, central category 1 with mean-square .69 is showing some 
over-predictability. In the data, one respondent choose this category in re­
sponses to all 25 items, suggesting that eliminating that particular 
respondent's data would improve measurement without losing information. 
Extreme category 2 with mean-square 1.46 is somewhat noisy. This high 
value is cause by a mere 6 observations. Inspection of these ratings for data 
entry errors and other idiosyncracies is indicated. 
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Guideline #5: Step calibrations advance. 

The previous guidelines have all considered aspects of the current 
sample's use ofthe rating scale. This guideline concerns the scale's infer­
ential value. An essential conceptual feature of rating scale design is that 
increasing amounts of the underlying variable in a respondent correspond 
to a progression through the sequentially categories of the rating scale 
(Andrich, 1996). Thus as measures increase, or as individuals with incre­
mentally higher measures are observed, each category of the scale in tum 
is designed to be most likely to be chosen. This intention corresponds to 
probability characteristic curves, like those in Figure 3, in which each 
category in tum is the most probable, i.e., modal. These probability curves 
look like a range of hills. The extreme categories always approach a 
probability of 1.0 asymptotically, because the model specifies that respon­
dents with infinitely high (or low) measures must be observed in the high­
est (or lowest) categories, regardless as to how those categories are defined 
substantively or are used by the current sample. 

The realization of this requirement for inferential interpretability of 
the rating scale is that the Rasch step calibrations, {Fk }, advance monotoni­
cally with the categories. Failure of these parameters to advance monotoni­
cally is referred to as "step disordering". Step disordering does not imply 
that the substantive definitions of the categories are disordered, only that 
their step calibrations are. Disordering reflects the low probability of ob­
servance ofcertain categories because of the manner in which those catego­
ries are used in the rating process. This degrades the interpretability of the 
resulting measures. Step disordering can indicate that a category represents 
too narrow a segment of the latent variable or a concept that is poorly de­
fined in the minds of the respondents. 

Disordering of step calibrations often occurs when the frequencies 
of category usage follow an irregular pattern. The most influential com­
ponents in the estimation of the step calibrations are the log-ratio of the 
frequency of adjacent categories and the average measures of the respon­
dents choosing each category. Thus, 

Fk "" log (Tk/Tk) - Bk + Bk_1 (3) 

where 

Tk is the observed frequency of category k, 
Tk-I is the observed frequency of category k-J, 
Bk is the average measure of respondents choosing category k, 
and Bk_1 is the average measure of those choosing category k-J. 
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It can be seen that step-disordering may result when a higher cat­
egory is relatively rarely observed or a lower category is chosen by re­
spondents with higher measures. 

In Table 1, disordered step calibrations are indicated with "*". The step 
calibrations correspond to the intersections in the probability curve plot, Fig­
ure 4. The step calibration from category 2 to category 3, F3, is -2.3110gits. In 
Figure 4, this is the point where the probability curves for categories 2 and 3 
cross at the left side of the plot. It can be seen that category 2 is never modal, 
i.e, at no point on the variable is category 2 ever the most likely category to be 
observed. The peak of category 2's curve is submerged, and it does not ap­
pear as a distinct "hill". Figure 4 suggests that a distinct range of hills, and so 
strict ordering of the step calibrations, would occur if categories 2 and 3 were 
combined, and also 4, 5, and 6, and finally 7 and 8. Since the extreme catego­
ries, 1 and 9, are always modal, it is not clear from this plot whether it would 
be advantageous to combine one or both of them with a neighboring, more 
central category. 

In Table 2, the step calibrations, -.85 and +.85 are ordered. The 
corresponding probability curves in Figure 5 exhibit the desired appear­
ance of a range of hills. 

,­
Guideline #6: Ratings imply measures, and measures imply ratings. 

In clinical settings, action is often based on one observation. Con­
sequently it is vital that, in general, a single observation imply an equiva­
lent underlying measure. Similarly, from an underlying measure is inferred 
what behavior can be expected and so, in general, what rating would be 
observed on a single item. The expected item score ogive, the model item 
characteristic curve (ICC), depicts the relationship between measures and 
average expected ratings. 

Figure 6 shows the expected score ogive for the 5 category Likert 
scale depicted in Figure 3. The y-axis shows the average expected rating. 
Since only discrete ratings can be observed, this axis has been partitioned 
at the intermediate .5 average rating points. To the practitioner, an ex­
pected average rating near to 4.0, (e.g., 3.75), implies that a rating of "4" 
will be observed. The expected score ogive facilitates the mapping of 
these score ranges on the y-axis into measure zones on the x-axis, the 
latent variable. The implication is that measures in, say, the "4" zone on 
the x-axis, will be manifested by average ratings between 3.5 and 4.5, and 
so be observed as ratings of "4". Equally, to be interpretable, observed 
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ratings of "4" on the y-axis imply respondent measures within the "4" 
zone of the latent variable. 

In Table 2, the "Coherence" columns report on the empirical relation­
ship between ratings and measures for the LFS data. The computation of 
Coherence is outlined in Table 3. M->C (Measure implies Category %) re­
ports what percentage of the ratings, expected to be observed in a category 
(according to the measures), are actually observed to be in that category. 

The locations of the measure "zone" boundaries for each category 
are shown in Table 2 by the Score-to-Measure Zone columns. Consider 
the M->C of category O. 63% of the ratings that the measures would 
place in category 0 were observed to be there. The inference ofmeasures­
to-ratings is generally successful. The C->M (Category implies Measure 
%) for category 0 is more troublesome. Only 42% of the occurrences of 
category 0 were placed by the measures in category O. The inference of 
ratings-to-measures is generally less successful. Nevertheless, experi­
ence with other data sets (not reported here) indicates that 40% is an em­
pirically useful level of coherence. 
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Table 3. 

Coherence of Observations. 

Observed Rating Observed Rating 
in Category outside Category 

Observed Measure ICIZ OCIZ 
in Zone (Rating in Figure 7) in Figure 7) (". H 

Observed Measure ICOZ ­
outside Zone ("x" in Figure 7) 

M- >C =In Category & Zone I All in Zone = 

ICIZ I (lCIZ + OCIZ) * 100% 


C->M = In Category & Zone f All in Category = 

ICIZ I (ICIZ + ICOZ) * 100% 


Figure 7 shows the Guttman scalogram for the LFS data, partitioned 
by category, for categories 0, 1, and 2, left to right. In each section ratings 
observed where their measures predict are reported by their rating value, 
"0", "1", or "2". Ratings observed outside their expected measure zone 
are marked by "x". Ratings expected in the specified category, but not 
observed there, are marked by".". In each partition, the percentage of 
ratings reported by their category numbers to such ratings and"."s is given 
by M->C. The percentage of ratings reported by their category numbers 
to such ratings and "x"s is given by C->M. In the left-hand panel, for 
category 0, the there are about twice as many "O"s as "."s, so C->M co­
herence of 63% is good. On the other hand, there are more "x"s than 
"O"s, so M->C coherence of 42% is fragile. The inference from measures 
to ratings for category °is strong, but from ratings to measures is less so. 
This suggests that local inference for these data would be more secure 
were categories °and 1 to be combined. 

Guideline #7: Step difficulties advance by at least 1.4 logits. 

It is helpful to communicate location on a rating scale in terms of 
categories below the location, i.e., passed, and categories above the loca­
tion, i.e., not yet reached. This conceptualizes the rating scale as a set of 
dichotomous items. Under Rasch model conditions, a test of m dichoto­
mous items is mathematically equivalent to a rating scale of m+1 catego­
ries (Huynh, 1994). But a rating scale of m+ 1 categories is only equivalent 
to test of m dichotomous items under specific conditions (Huynh, 1996). 
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Figure 7. Guttman scalograms of LFS data, flagging out-of-zone observations 
wiht "x". 

For practical purposes, when all step difficulty advances are larger 
than 1.4 logits, then a rating scale of m+1 categories can be decomposed, 
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in theory, into a series of independent dichotomous items. Even though 
such dichotomies may not be empirically meaningful, their possibility 
implies that the rating scale is equivalent to a sub-test of m dichotomies. 
For developmental scales, this supports the interpretation that a rating of 
k implies successful leaping of k hurdles. Nevertheless, this degree of 
rating scale refinement is usually not required in order for valid and infer­
entially useful measures to be constructed from rating scale observations. 

The necessary degree of advance in step difficulties lessens as the 
number of categories increases. For a three category scale, the advance 
must be at least 1.4 logits between step calibrations in order for the scale 
to be equivalent to two dichotomies. For a five category rating scale, ad­
vances of at least 1.0 logits between step calibrations are needed in order 
for that scale to be equivalent to four dichotomies. 

In Table 2, the step calibrations advance from -.85 to +.85 logits, a 
distance of 1.7. This is sufficiently large to consider the LFS scale statis­
tically equivalent to a 2-item sub-test with its items about 1.2logits apart. 
When the two step calibrations are -.7 and +.7, then the advance is 1.4 
logits (the smallest to meet this guideline), and the equivalent sub-test 
comprises two items of equal difficulty. When the advance is less than 
1.4logits, redefining the categories to have wider substantive meaning or 
combining categories may be indicated. 

Guideline #8: Step difficulties advance by less than 5.0 logits 

The purpose of adding categories is to probe a wider range of the 
variable, or a narrow range more thoroughly. When a category represents 
a very wide range of performance, so that its category boundaries are far 
apart, then a "dead zone" develops in the middle of the category in which 
measurement loses its precision. This is evidenced statistically by a dip 
in the information function. In practice, this can result from Guttman­
style (forced consensus) rating procedures or response sets. 

In Figure 8, the information functions for three category (two step) 
items are shown. When the step calibrations are less than 3 log its apart, 
then the information has one peak, mid-way between the step calibra­
tions. As the step calibrations become farther apart, the information func­
tion sags in the center, indicating that the scale is providing less information 
about the respondents apparently targeted best by the scale. Now the 
scale is better at probing respondents at lower and higher decision points 
than at the center. When the distance between step calibrations is more 
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than 5 logits, the information provided at the item's center is less than 
half that provided by a simple dichotomy. When ratings collected under 
circumstances which encourage rater consensus are subjected to Rasch 
analysis, wide distances between step calibrations may be observed. Dis­
tances of 30 log its have been seen. Such results suggest that the raters 
using such scales are not locally-independent experts, but rather rating 
machines. A reconceptualization of the function of the raters or the use of 
the rating scale in the measurement process may be needed. 
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0.4·· 

c 
0.35a-0 

0.3E 
6 
0 0.25~ 
s: 

"0 0.2 
(,) 

:i: 0.15VI.­-+­
c 

0.1..... 
U1 

0.05 .. 

0 
0=6 =4 =3 =2 -1 0 2 :3 4 5 

Logit Measure 
Figure 8. Information functions for a three-category rating scale. 

In clinical applications, discovery of a very wide intermediate category 
suggests that it may be productive to redefine the category as two narrower 
categories. This redefinition will necessarily move allcategory thresholds, 
but the clinical impact of redefinition of one category on other clearly defined 
categories is likely to be minor, and indeed may be advantageous. 

Conclusion 

Unless the rating scales which form the basis of data collection are 
functioning effectively, any conclusions based on those data will be inse­
cure. Rasch analysis provides a technique for obtaining insight into how 
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the data cooperate to construct measures. The purpose of these guide­
lines is to assist the analyst in verifying and improving the functioning of 
rating scale categories in data that are already extant. Not all guidelines 
are relevant to any particular data analysis. The guidelines may even 
suggest contradictory remedies. Nevertheless they provide a useful start­
ing-point for evaluating the functioning of rating scales. 
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One of the benefits of item response theory (IRT) applications in scale 
development is the greater transparency of resulting scores (e.g., Fisher, 
1993). That is, assuming a well-fitting model, a total score on a particular 
scale can be translated into a profile of probable item responses with rela­
tive ease. Graphic versions of these profiles, often referred to as "vari­
able maps", are readily obtained in the output from programs such as 
BIG STEPS (Linacre and Wright, 1993). In some instances this graphic 
output has been incorporated into research reports as a useful way to dis­
play information about item distribution along the continuum represented 
by the scale (e.g., Ludlow, Haley, and Gans, 1992; Wright, Linacre, and 
Heinemann, 1993). To date, however, this feature of IRT has received 
very limited attention in the research literature compared to the growing 
body of information on applications of IRT in scale development. 

The purpose of the present paper is to encourage greater use of vari­
able maps from IRT analyses to support theoretically and clinically mean­
ingful use of functional assessment scores in both research and clinical 
contexts. Application of this feature can help bridge the gap between 
quantitative summaries of rehabilitation status and questions regarding 
the profile of strengths and limitations that such scores may represent. 
The paper expands on previous reports in the literature (e.g., Haley, Ludlow 
and Coster, 1993) that have focused on interpretation of results from an 
individual clinical assessment by focusing on use of variable maps to in­
terpret data from a group of individuals. 

The examples used for this illustration are drawn from research con­
ducted during the standardization of a new functional assessment for el­
ementary school students with disabilities, the School Function Assessment 
(SFA) (Coster, Deeney, Haltiwanger, and Haley, 1998). After an over­
view of the instrument and its features, the paper will describe two differ­
ent applications of SFA variable maps during an outcome prediction study. 
Other rehabilitation research and clinical contexts where use of variable 
maps could enrich interpretation of results will also be presented. 

General Background 

The focus of the study from which these examples are derived was 
to identify a set of predictors that accurately classified students with dis­
abilities into two groups: those with high and low levels of participation 
in the regular elementary school program. The analysis method chosen to 
address this question was the non-parametric Classification and Regres­
sion Tree (CART) or recursive partitioning approach (Breiman, Fried­
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man, Olshen, and Stone, 1993). This method was chosen over multivari­
ate regression or discriminant analysis methods because it allows greater 
examination of outcomes at the level of individuals. 

Instrument 

The School Function Assessment examines three different aspects 
of elementary school functioning: level of participation, need for sup­
ports, and functional activity performance across six major activity set­
tings, including classroom, playground, transportation, transitions, 
mealtime, and bathroom. It is a criterion-referenced, judgement-based 
instrument whose primary purpose is to assist the student's special edu­
cation team to identify important functional strengths and limitations in 
order to plan effective educational programs, and to measure student 
progress after the implementation of intervention or support services. 

The present examples involve two sections of the SFA: Part I (Par­
ticipation) and Part III (Activity Performance). The Part I Participation 
scale examines the student's level of active participation in the important 
tasks and activities of the six major school settings listed above. Ratings 
for each setting are completed using a 6 point scale where each rating 
represents a different profile of participation: 1 =Extremely limited; 2 = 
Participation in a few activities; 3 =Participation with constant supervi­
sion; 4 =Participation with occasional assistance; 5 =Modified full par­
ticipation; 6 = Full Participation. Ratings are summed to yield a total 
Participation raw score. Raw scores are converted to Rasch measures 
(estimates) and then transformed to scaled scores on a 0-100 continuum. 
The scaled scores are interpreted in a criterion-referenced (as compared 
to norm-referenced) manner. 

Part III, the Activity Performance section, consists of 18 indepen­
dent scaJes, each of which examines performance of related activities 
within a specific task domain (e.g., Travel, Using Materials, Functional 
Communication, Positive Interaction). There are between 10 and 20 items 
in each scale. Each item is scored on a 4-point rating scale based on the 
student's typical performance of the particular activity: 1 = Does notl 
cannot perform; 2 =Partial performance (student does some meaningful 
portion of activity); 3 = Inconsistent performance (student initiates and 
completes activity, but not consistently); and, 4 =Consistent performance 
(student initiates and completes activity to level expected oftypical same 
grade peers). Item ratings are summed to yield a total raw score for the 
scale, which are then converted to Rasch measures (estimates) and trans­
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formed to scaled scores on a 0-100 continuum. Like the Part I scores, 
these scaled scores are also interpreted in a criterion-referenced manner. 

All scales of the SFA were developed using the Rasch partial credit 
model (BIGSTEPS; Linacre and Wright, 1993). Final score conversion 
tables were derived directly from the item measure information. Scores 
were transformed onto a 0 to 100 continuum for greater ease of use (Ludlow 
and Haley, 1995). The data presented in this paper involved the Stan­
dardization edition of the SFA. The final, published version of the SFA is 
identical to the Standardization version except for two items that were 
dropped from Part III scales because of serious goodness-of-fit problems. 
Psychometric information on the SFA is detailed in the User's Manual 
(Coster et aI, 1998). Studies have provided favorable evidence of internal 
consistency and coherence, as well as stability of scores across assess­
ment occasions (test-retest r's > .90). 

Participants 

The sample from which the current data were obtained consisted of 
341 elementary school students with disabilities with a mean age of 9.0 
years. Approximately 65% were boys and 35% were girls. Data were 
collected from 120 public school sites across the United States, which 
included a representative mix of urban, suburban, and rural sites as well 
as racial/ethnic groups. Forty-six percent of the students were identified 
as having a primary physical impairment (e.g., cerebral palsy, spina bifida) 
and 54% were identified as having a primary cognitiveibehavioral im­
pairment (e.g., autism, mental retardation, ADHD). 

Students were identified by school personnel, following general 
guidelines established by the project coordinator. The major concern 
during sample selection was to maximize diversity in the sample, in terms 
of school location and clinical diagnosis, in order to assess whether the 
scales were relevant and appropriate for all geographic regions and for 
students with different types of functional limitations. Hence, only a small 
number of students from each individual school were included. Since 
diversity of participants was the most essential requirement, and norma­
tive standards were not being established, random selection was not deemed 
feasible. 

Procedure 

The data collection and sample selection were conducted by volun­
teer school professionals. Because the authors' priority was to create an 
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instrument that could be applied readily in typical school situations, it 
was designed to require no special training in administration or scoring. 
Participants were asked to rely on the description and instructions in the 
test booklet to understand both the items and the rating scales. Because 
the SFA is so comprehensive, it is unlikely that anyone person would 
have all the information required to complete all scales. Typically, two or 
more persons who worked with the student, often a teacher and therapist, 
were involved as respondents. No additional instructions were given about 
how this collaborative effort should be conducted. 

Application Example 1: 

Setting a criterion to create a dichotomous variable 


Rehabilitation outcome studies like the one described here often in­
volve dichotomous variables, e.g., examination of factors associated with 
good versus poor treatment outcome. Outcome group criteria can be es­
tablished in a variety of ways. Sometimes there is a specific definition of 
what constitutes "good" versus "poor" outcome for a particular group. 
For example, in outcome studies of stroke rehabilitation, good outcome 
may be meaningfully defined as "discharge to the community" and poor 
outcome as "discharge to nursing home". In other circumstances, how­
ever, the outcome of interest is measured on a continuous scale, and the 
researcher must then decide how to create the dichotomous split. This 
situation arises almost any time that a functional scale is used to examine 
patient performance because most of these scales are continuous. A vari­
ety of methods can be used to split the groups in this situation, for ex­
ample doing a median split, or splitting subjects into those above or below 
the mean. The drawback to such methods is that the selected dividing 
point may be statistically meaningful, but mayor may not have any real 
world meaning. That is, members of the two groups may not necessarily 
differ in ways that are congruent with our clinical understanding of good 
and poor outcomes. For scales developed using IRT methodology, vari­
able maps offer an alternative approach. 

In the present analysis, the SFA Part I Participation total score was 
chosen as the outcome variable since this score reflected the students' 
overall degree of success in achieving active participation across the six 
different school environments. This variable needed to be dichotomized 
in order to conduct a classification analysis. To identify a meaningful 
split point, the variable map for the Participation scale was examined in 
conjunction with the definitions of the rating categories for that scale. 
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The rating definitions suggested a logical split between students whose 
ratings were between 1 and 3 (i.e., those who needed intensive levels of 
physical assistance or supervision in order to perfonn important school 
tasks), and those with ratings between 4 and 6 (i.e., those who were able 
to do many or all school tasks without assistance). 

One option in this situation would have been to use a frequency 
count to classify the participants, for example, by setting the criterion that 
all students who achieved at least four ratings of "4" or better would be 
put in the "good outcome" group. This approach, however, would assign 
equal weight to all the school settings, ignoring infonnation from IRT 
analyses indicating that the settings present different degrees of difficulty 
in their demands. Such an approach, in fact, defeats the major purpose of 
using IRT to construct summary scores that reflect actual item difficulty. 

A sounder alternative is to use the variable map from the Participation 
scale, which is reproduced in Figure 1. By looking at the map, one could 
identify the specific summary score (transfonned score) that best repre­
sented the perfonnance profile for what was considered "high participa­
tion". Because the variable maps reflect the infonnation on relative item 
and rating difficulty, one could decide the settings in which it was most 
important for participants to have achieved a minimum rating of "4" in 
order to be included in the "high participation" group. Two possibilities are 
illustrated in Figure 1. In the first, a lower criterion is set (dotted line). This 
criterion reflects a judgement that when the student's total score indicates 
there are at least two settings in which "4" is the expected rating, he or she 
is assigned to the "high participation" group. A second choice, (solid line), 
is to set a higher criterion. Here, the final cut score is set at the point where 
the student would be expected to have ratings of "4" in all settings. 

An important point here is that this alternative strategy for cut-score 
determination rests on the researcher's clinical understanding of which 
profile best represents the outcome of interest for the particular study. 
Thus, rather than rely on more arbitrary groupings based on traditional 
statistical evidence such as frequency counts or the midpoint of a distri­
bution, the researcher can set a criterion that incorporates information 
regarding the difficulty of the items and the desired level of performance 
defined by the positive and less positive outcomes selected. 

Application Example 2: Interpreting the meaning of results 

The focus of the study used for these examples was to identify predic­
tors of good and poor outcomes, with an ultimate aim of understanding path­
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: 

ITEM -10 '0 30 5~ 7D 90 110 

Regular Ed. Class 2 is 4 5 : 6 
Playground/recess : 2 : !5 . 4 : 5 6 
Transportation 1 2 : :i: : 5 : 6.,BathroamvToileting 2 : ~: 4 5 . 6 
Transitions . 2 : 3 ..:: 4' : 5 6 

.:Mealtime/Snacktime 2 : 3 "5 4' : 5 6 

-10 10 30 7D 90 ',051 
Figure 1. Participation Variable Map (6 school setting items). Adapted from the 
School Function Assessment. Copyright© 1998 by Therapy Skill Builders, a 
division of The Psychological Corporation. Reproduced by permission. All 
rights reserved. 

Note: The two lines indicate potential cut-off points to dichotomize the 
Participation variable. For the first option, a lower scaled score is selected (dotted 
line) at the point where a student is expected to have a rating of "4" (Participation 
with occasional assistance) in at least two settings. Once a student achieves this 
score, he or she will be assigned to the "high participation" group. For the second 
option (solid line), a higher criterion is set by choosing a cut-off score at the 
point where the student would have an expected rating of at least "4" in all settings. 

ways to successful participation and the variables that help identify those 
students most likely to benefit from rehabilitation services. Because the ulti­
mate goal was to generate outcome predictions for individuals, a Classifica­
tion and Regression Tree (CART) analysis approach (Breiman, Friedman, 
Olshen, and Stone, 1993) was chosen. A full discussion of CART is beyond 
the scope of the present paper, however the essential features will be de­
scribed as needed to understand this application example. A complete dis­
cussion of the present study and its results is found elsewhere (Mancini,1997). 

CART is a non-parametric multivariate procedure that can be used 
to classify individuals into specified outcome categories. The analysis 
proceeds through a series of binary recursive partitions or splits to select 
from a larger set of predictor variables those that, considered in sequence, 
provide the most accurate classification of the individuals in the sample. 
This method is particularly helpful to identify interactions among predic­
tor variables in situations where such interactions are likely but there is 
limited previous research to guide the analysis. (See Falconer, Naughton, 
Dunlop, Roth, Strasser, and Sinacore, 1994, for an application of CART 
methodology in the analysis of stroke rehabilitation outcomes). 
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Another valuable feature of CART is that, for each predictor vari­
able that is selected, all potential divisions or values of the variable are 
tested to identify the one that best separates individuals into the groups of 
interest. This cut-point can be useful for clinicians who want to use the 
CART decision tree to identify persons likely to have better or worse 
outcomes in a similar clinical context. However, for researchers inter­
ested in understanding the pathways to different outcomes, it would be 
helpful if there were some means to ascertain why a particular cut-point 
might have been selected. That is, what distinguishes the performance of 
persons above and below that score level? This is the situation where, if 
scores are IRT -based measures, application of the relevant variable maps 
may prove very useful. 

In the present example, a CART analysis was conducted to examine 
predictors of school participation, using the SFA Participation variable, 

0 10 20 30 40 50 70 80 90 100 

Buttons sma II buttons 2 : 3 4 

Fastens belt buckle 1 · 2 : 3 4 

Separates/hooKs zipper 1 '2 : 3 4 

Buttons 1:1 corresp. 1 2 3 4 

Secures shoes 1 2 : 3 : 4 

Puts shoes on 2 · 3 : 4 

Puts socks on/off 2 : : 4
.] 


Puts on pullover top 1 2 : 4 

Hangs clothes 1 2 : 3 . 4
,
Removes shoes 2 : 3 4,
Removes pullover top 2 : 3 : 4 
Zips and unzips 2 3 . : 4 
Lowers garment bottom 2 : 3 4 
Puts on front-open top 1· 2 3 : 4 
Puts on hat 1· 2 3 ·4 
Removes front-open top 2 3 · 4 
Removes hat 2 3 4-

0 10 20 30 40 50 60 70 80 90 100 

Figure 2. Clothing Management Variable Map (17 functional activity items). 
Adapted from the School Function Assessment. Copyright© 1998 by Therapy 
Skill Builders, a division of The Psychological Corporation. Reproduced by 
permission. All rights reserved. 

Note: The solid line indicates the cut-point of 59 selected by the CART analysis. 
The expected functional activity performance profile of students with scores below 
59 is described by the ratings to the left of this line; that of students above the cut­
point is described by the ratings to the right of the line. Results indicate that 
students may be classified into the "high participation" group even though they 
may still be expected to have difficulty (i.e., as indicated by ratings of 1, "Does 
not perform" or 2, "Partial performance") on fine motor activities such as buttoning 
buttons. 
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dichotomized as described above, as the outcome measure and SFA Part 
III scaled scores as predictors. The specific research question was: which 
of the functional tasks examined in Part III are most informative in pre­
dicting high or low participation? The first variable selected by the pro­
gram was the Clothing Management score, with a cut point set at a score 
of 59. Although this result seemed counter-intuitive, given the outcome 
focus on school participation, a review of the content of this scale sug­
gested that it was probably selected because it measures functional per­
formance in activities that require a variety of both gross motor and fine 
motor skills. Thus, the variable may be serving as an indirect measure of 
severity of physical disability (for more detailed discussion see Mancini, 
1997). However, application of the variable map for this scale provided 
more insight into the result. 

The variable map for this scale is reproduced in Figure 2, and the 
selected cut point is identified with the solid vertical line. The line iden­
tifies the expected pattern of item performance associated with scores 
above (to the right) and below (to the left) of 59. Review of the items 
indicates that students with scores below 59 would be expected to have 
difficulty with the basic gross motor and postural control aspects of dress­
ing. The profile suggests that these students are generally not able to 
consistently initiate and/or complete (ratings <3) lower body dressing 
activities such as raising and lowering pants or putting on and taking off 
shoes and socks, nor can they do any significant portions of manipulative 
taskS (ratings of 1). In qmtrast, students with scores above 59 manage the 
gross motor aspects of dressing relatively well, although many would still 
be expected to have difficulty with fine motor aspects such as doing fas­
teners (e.g., expected ratings of 2). 

This more in-depth interpretation of results supported by the vari­
able map is valuable on several counts. First, examining the items on 
either side of the cut-point helped confirm the initial interpretation that 
the scale was selected because it provided an indirect measure of severity 
of mobility limitations. This result makes clinical sense since severe 
mobility restrictions can pose significant challenges to active participa­
tion in school across a wide variety of contexts. On the other hand, the 
results also suggested that limitations in the performance of manipulative 
activities did not, on their own, significantly predict school limitations. 
The latter result is somewhat surprising, given the number and variety of 
fine motor activities (e.g., writing and other tool use, eating activities) 
typically expected during the school day. This result invites further re­
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search into the question of what the minimum threshold of functional 
performance for school-related fine motor activities may be, and the de­
gree to which limitations in this area may be accommodated successfully 
through various adaptations. This more precise definition of questions 
for future research would not have been possible without the additional 
information provided through examination of IRT variable maps. 

Discussion 

This paper has presented two illustrations of research applications of 
variable maps: to guide definition of outcome groups and to obtain a more 
in-depth understanding of results. Both types of applications are relevant 
to a variety of other clinical and research situations where IRT -based scales 
are used. For example, clinical facilities and researchers analyzing patient 
outcomes may face similar questions of how best to describe positive and 
negative outcome groups. If they are using IRT-based measures for which 
variable maps are available, they can follow a similar rational procedure for 
deciding which cut-off point is most appropriate, given their questions. 

The more common applications are those in which variable maps 
can enhance understanding of particular scores related to research or clini­
cal outcomes. For example, rather than simply reporting the mean func­
tional performance score for a group of patients discharged from an 
intervention program, one could use the variable map to describe the ex­
pected functional performance profile associated with that score and the 
proportion of patients who achieved that level or better. Similarly, de­
scriptive analyses of change over time in a particular patient group would 
be much more meaningful if the scores at admission and discharge were 
interpreted, using variable maps, in terms of the expected functional pro­
files represented by each score. For example, consider an intervention 
program that enabled a substantial portion of students to achieve scores 
above 59 on the Clothing Management scale used in the previous ex­
ample. In addition to reporting the average amount of change in the scaled 
score after intervention, one could also describe the increased level of 
independent function that this change represents, i.e., that these students 
are now able to manage basic dressing tasks more consistently on their 
own, implying less need for assistance from the teacher. In this context, 
interpreting results using variable map information on the expected func­
tional performance profiles associated with pre and post scores can help 
to resolve debates over whether particular "statistical" differences in scores 
represent "clinically meaningful" change. 
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Measuring Pretest-Posttest Change 
with a Rasch Rating Scale Model 

Measuring change over time presents particularly difficult challenges for 
program evaluators. A number of potential confounds may distort the 
measurement of change, making it unclear whether the observed changes 
in the outcome variable are due to the intervention or some other effect 
such as regression toward the mean (Lord, 1967), maturation of partici­
pants, or idiosyncrasies of participants who drop out of the program (Cook 
and Campbell, 1979). When rating scales or assessment instruments are 
used to measure changes in an outcome variable, additional confounds 
may be introduced into the evaluation process. For example, participants 
may improve their performance on an assessment instrument that is used 
as both a pre-test and post-test because of familiarity with the test items 
(Cook and Campbell, 1979). Alternatively, when changes are measured 
with Likert-type questionnaires, participants may interpret the items or 
the rating scale options differently on the two occasions (Wright, 1996a). 

This article describes and illustrates an equating procedure proposed 
by Wright (l996a) that can be applied to rating scale data to compensate 
for the latter of these potential confounds to measuring change over time. 
That is, we describe a method for reducing the effect that changes in par­
ticipants' interpretations of questionnaire items and rating scale options 
may have on the measurement of change on the underlying construct. We 
outline the procedures for making this correction, illustrate how these 
procedures are carried out, and demonstrate how the employment of these 
procedures can lead to the discovery of changes that would not be appar­
ent otherwise. By implementing this equating procedure, evaluators can 
eliminate at least one potential threat to the valid interpretation of changes 
in attitudes or opinions as measured by Likert-type questionnaires. 

Theoretical Framework 

In many program evaluation settings, evaluators are interested in 
measuring changes in the behaviors or attitudes of non-random samples 
of participants who are drawn from a population of interest. Changes in 
the measures of the outcome variable are typically attributed to participa­
tion in the program in question. Of course, numerous threats to the valid­
ity of this inference exist, and each of these threats highlights a potential 
confound that must be taken into account when designing an evaluation, 
collecting and analyzing data, and interpreting the results. These threats 
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to the validity of interpretations that are drawn from a program evaluation 
may relate to statistical validity (the accuracy of the statistical inferences 
drawn about the relationship between the program and the outcome vari­
able), construct validity (the accuracy of the inferred relationship between 
the measurement procedures and the latent construct they are intended to 
represent), external validity (the accuracy of the inferred relationship be­
tween the participants and the population that they are intended to repre­
sent), or internal validity (the accuracy of the theory-based inferences 
drawn about the relationship between the program and the outcome vari­
able). Methods for avoiding or reducing each of these threats to drawing 
valid inferences are outlined by Cook and Campbell (1979). 

The problem addressed by this article represents one of several po­
tential threats to internal validity. That is, we are concerned with whether 
observed changes in the outcome variable are truly caused by participa­
tion in the program or whether observed changes can be attributed to other 
variables that are byproducts of the evaluation setting. In a program evalu­
ation, threats to internal validity may arise when changes in participants 
can be attributed to maturation, changes in participants' familiarity with 
the measurement instrument, mortality of participants, the procedures used 
to assign participants to treatments, statistical regression toward the mean, 
or changes in the measurement instrument rather than the treatment itself. 
The threat to internal validity that we discuss arises when Likert-type 
questionnaire items are used to measure attitudinal changes. More spe­
cifically, we are concerned with the degree to which changes in the way 
participants interpret questionnaire items and use rating scales confounds 
the measurement of changes in attitudes or opinions. 

Prior research in this area has shown that participants' interpreta­
tions of items or rating scales may change over time and that this is a 
common concern for those who use questionnaires to measure outcome 
variables. For example, Zhu (1996) investigated how children's 
psychomotoric self-efficacy changes over time. In this study, children 
completed a questionnaire designed to measure the strength of their con­
fidence about their abilities to perform a variety of physical exercises. 
The results of this study indicated that some of the activities were per­
ceived as being less difficult to perform, relative to the remaining activi­
ties, over repeated administrations of the questionnaire. Such differential 
functioning of items over time threatens the validity of interpretations 
that might be drawn from the results of Zhu's study. 
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In order to evaluate changes in persons over time, participants' in­
terpretations of the items and rating scales that are used to measure this 
change must be stable across multiple administrations of the question­
naire. Only if interpretations of items and rating scales demonstrate such 
stability can differences between measures of the persons be validly in­
terpreted (Wilson, 1992; Wright, 1996b). To further exacerbate the prob­
lem, summated composite scores are not comparable across time when 
items are added, removed, or reworded; items are skipped by some sub­
jects; or response options change from pre-test to post-test-all problems 
that are common with multiple questionnaire administrations (Roderick 
and Stone, 1996). In order to mitigate some of these problems, scaling 
methods are often used to place measures from different administrations 
of a questionnaire onto a common scale. 

Rasch Rating Scale Model 

The Rasch Rating Scale Model (RSM) is an additive linear model 
that describes the probability that a specific person (n) will respond to a 
specific Likert-type item (i) with a specific rating scale category (x) 
(Andrich, 1978). The mathematical model for this probability (Equation 
1) contains three parameters: the person's ability (~n)' the item's difficulty 
(0), and the difficulty of each scale step (i.e., the threshold between two 
adjacent scale levels, x and x-I) (t.). Calibration of questionnaire data to 

J 
this model results in a separate parameter estimate and a standard error 
for that estimate for each person, item, and scale step in the measurement 
context. 

(1) 

where, P(Xni = x) is the probability that a person n responds with rating 
scale category x to item i, which has m+1 response options. 

The fit of these estimates to the RSM (i.e., model-data fit) can be 
evaluated using a standardized mean square fit statistic as shown in Equa­
tion 2 (Wright and Masters, 1982). When the data fit the RSM, t has a 

e 

mean near zero and a standard deviation near one. Estimates with It 1>2.00 
e 

exhibit poor fit to the model and should be further examined to determine 



138 WOLFE AND CHIU 

whether there are problems with the scores associated with that particular 
person, item, or rating scale step. 

(2) 

where ve is the weighted mean of the squared residuals (weighted by their 
variances) of the observed data from their expected values and qe is the 
model standard deviation of the weighted mean square. 

An important feature of the RSM is that it allows one to evaluate 
the extent to which item calibrations are stable across samples of per­
sons or the extent to which person measures are stable across samples 
of items (i.e., to determine the invariance of parameter estimates). This 
feature is useful when comparing two groups of persons who respond to 
the same set of items or equating two tests (each composed of different 
items) that are taken separately by a single group of people. In the present 
context, invariance evaluation is useful because it allows one to deter­
mine the extent to which item calibrations and person measures are stable 
across two measurement occasions. The stability of two parameter esti­
mates ( 81 and eJ that are obtained on different occasions is evaluated 
by examining the standardized difference (Equation 3) between the two 
estimates (Wright and Masters, 1982). The standardized differences for 
a population or item pool that conform to the RSM have an expected 
value of 0.00 and an expected standard deviation of 1.00. Large depar­
tures in observed data from these expected values indicate estimates 
that are less stable over time than would be expected. 

(3) 

Examining Change Over Time with the Rating Scale Model 

Measuring change over time requires a stable frame of reference, and 
differential functioning of items and rating scales disrupts the establish­
ment of such a frame of reference. In order to measure changes in the per­
formance of persons across time, other changes in the measurement 
framework must be eliminated or controlled. There are several methods for 
accomplishing this (Wright, 1996b). For example, facets other than the per­
sons may be assumed to be constant by forcing the elements of each facet to 
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STEP 1 

Evaluate the rating scale and item invariance 


with separate analyses of Time 1 and Time 2 Data: 


';1 versus ';2 and Di/ versus Di2 


~ 

STEP 2 


Create common scale calibrations (';c) by stacking Time 1 & Time 2 data 


and treating persons as unique at each time point. 


~ 

STEP 3 


Obtain corrected person measures (/3nlJ and 


corrected item calibrations (Di/e) for Time 1 data 


with the rating scale anchored on ';c 


1 

STEP 4 


Obtain corrected person measures (/3n2c) for Time 2 data 


with the rating scale anchored on ';e 


and the 0 stable items from Step 1 anchored on Dile 


Note: Person change is evaluated via /3nle-/3n2c 


1 

STEPS 

Obtain corrected item calibrations (Di2c) for Time 2 data 


with the rating scale anchored on '<xc 


and the persons anchored on /3n2c 


Note: Item change is evaluated via Dilc-Di2c 


Figure 1. Steps for creating a frame of reference using Rasch measurement. 
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remain fixed. Alternatively, facets that exhibit noticeable change from one 
occasion to another may be assumed to be truly different indicators of the 
construct in question and may, therefore, be treated as being completely 
different elements at each time. Finally, a compromise can be achieved be­
tween different administrations of an instrument by creating an "average" 
frame of reference and allowing facets to vary about that average. 

The method we describe was originally proposed by Wright (1996a), 
and this method creates a common frame of reference by assuming that 
some elements of the measurement situation remain constant and by al­
lowing others to vary over time. Many researchers desire to identify 
whether differences demonstrated by specific items or persons are large 
enough to be of importance, and the method presented in this article al­
lows for such a distinction. Once a common frame of reference has been 
created, differences between person measures or between item calibra­
tions at each measurement occasion can be evaluated by examining the 
standardized differences of the parameter estimates produced for each 
occasion. The method is described here as a five step procedure as por­
trayed in Figure 1. 

Step 1: Evaluate Rating Scale and Item Invariance 

The first step in using the RSM to measure change over time is to 
determine whether interpretations of the scale steps and the items are stable 
across the two measurement occasions. If the item and step calibrations 
do demonstrate stability over time (i.e., they are invariant), then differ­
ences between person measures at the two occasions are valid indicators 
of changes in persons over time (i.e., they are free from potential con­
founding due to changes in interpretations of items or uses of rating scales). 
However, if the scale step and item calibrations are not invariant over 
time, then the researcher must disentangle the changes in the scale steps, 
items, and persons to determine which elements of the measurement con­
text are indeed changing (Steps 2 through 5). 

To determine whether the scale step or item calibrations are invari­
ant over time, one must generate two data sets-one containing the re­
sponses of each person (n) to each item (i) at Time 1 and the other 
containing the responses of each person to each item at Time 2. The lay­
out of these data sets is shown in Figure 2. Item and step calibrations, as 
well as person measures, are obtained for each data set separately so that 
there is a pair of estimates, one for Time 1 and one for Time 2, for each 
scale step (tjl & 'tJ), each item «\ & 3), and each person (~nl & ~n2) 
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1 1-/ xIII 
x,2l '111 1H 

2 1-/ x211 x221 ···x2l1
Timel : . . . . . . 

N 1-/ xNll xN21 ···xNIl 

1 1-/ xI12 xI22··· X1I2] 
. 2 1-/ x212 x222 ···x212 

Tlme2:. . . ...r. . . ..,. . . ... 

N 1-/ xNI2 xN22 ···xNl2 

Figure 2. FACETS Data Layout for Step 1: The first column shows the examinee, 
the second column shows the item range, N is the number of examinees, and I is 
the number of items. 

(where ~nl refers to the measure for person n at Time 1 and ~n2 refers to 
the for person n measure at Time 2). 

To evaluate item and step calibration invariance over time, one com­
pares the pair of calibrations for each element of these two facets. That is, 
one compares 'tjl and 'tj2 for each step level and compares Oil to 0i2 for each 
item. This comparison can be made using the standardized difference of 
the two estimates (Equation 3). Items or scale steps that exhibit large dif­
ferences between their Time 1 and Time 2 calibrations (e.g., Izl> 2.00) are 
not invariant over time (i.e., they are unstable). Such differences between 
the way the scale steps were used or the items were interpreted at each 
occasion may confound any inferences that are drawn based on observed 
differences in the person measures for Time 1 and Time 2, and the re­
searcher must make corrections (Steps 2 through 5). For now, note that 
there are 0 invariant items. If there are no large differences between step 
and item calibrations from the two occasions, then it is safe to interpret the 
differences between the person measures from the two occasions as indica­
tors of change in persons over time. Again, this can be done by examining 
the standardized differences (Equation 3) between the two measures for 
each person. (~nl & ~n2)· 

Step 2: Create Common Scale Calibrations 

If the analyses in Step 1 reveal that any of the step or item calibra­
tions are not stable across time, then there is a need to constrain this 
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variability before interpreting observed changes in person measures. In 
order to measure change, one must assume that at least one facet of the 
measurement context remained stable. The current method relies on the 
assumption that the rating scale remained stable by using the average value 
for the scale steps to create the measurement framework. Thus, this method 
assumes that a common underlying, equal-interval scale adequately por­
trays the data and that departures from that underlying scale are due only 
to random fluctuations. 

Therefore, the second step in measuring change over time is to cre­
ate common step calibrations so that person measures and item calibra­
tions from Time 1 and Time 2 can be compared on a common underlying 
rating scale. To accomplish this, we allow persons to float from Time 1 to 
Time 2, and items are assumed to be invariant from Time 1 to Time 2. 
That is, persons are treated as being different objects of measurement on 
each of the two occasions. This means that the two data sets from Step 1 
must be reconfigured by assigning two unique identifiers to each per­
son-one for Timel responses (n.1) and one for Time 2 responses (n.2) 
and appending them (i.e., stacking them to create a single data set). The 
format of the reconfigured data is shown in Figure 3. 

1.1 1-/ x1.111 x1.l21 ... xl.lIl 

2.1 1-/ x2.111 x2.121 ... x2.1Il 

N.1 1-/ xN.111 xN.l21 ,"xN.lIl
Stacked: 

1.2 1-/ x1.212 xl.222 ... x1.212 

2.2 1-/ x2.212 x2.222 ..• x2.212 

N.2 1-/ xN.212 xN.222 ,,,xN.212 

Figure 3. FACETS Data Layout for Step 2: The first column shows the examinee, 
the second column shows the items, N is the number of examinees, and I is the 
number of items. 

This stacked data set is analyzed to obtain step calibrations that are 
consistent with person performance and item functioning across both oc­
casions. The values of these common scale estimates ('t. ) are used in Steps

JC 
3 through 5 as anchors for the scale steps. Analysis of the stacked data set 
also produces a single set of item calibrations and two separate measures 
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for each person-one portraying the person at Time 1 and another por­
traying the person (as a different person) at Time 2. These item calibra­
tions and person measures are ignored. Note that the calibrations from 
this step for the items that were identified as showing instability over time 
in Step 1 should show greater misfit to the RSM (Wright, 1996b). 

Step 3: Correct the Time 1 Estimates 

Once a common rating scale has been created for the two occasions, 
that scale is used as a frame of reference for the Time 1 and Time 2 data 
sets. In Step 3 of the procedure, the Time I data are re-analyzed using the 
step calibrations from Step 2 (i.e., 'tj ) as anchors for the rating scale. This 
results in two sets ofestimates: a) corrected person measures for all persons 
(R 1 ), and b) corrected item calibrations for all items (0.1 ). These estimates tJ n C I C 

are referenced to the common scale that was created in the Step 2 analyses, 
and they are used as the basis for measuring change in Steps 4 and 5. 

Step 4: Correct the Time 2 Person Measures 

In Steps 2 and 3, a frame of reference was created for interpreting 
changes in person measures at Time 2 by creating a rating scale that is 
common to both occasions and determining the corrected Time 1 person 
measures and item calibrations. In Step 4, the Time 2 data are re-analyzed 
by anchoring the steps on the common-scale values obtained in Step 2 
(i.e., 'tj ) and anchoring the a invariant items from Step 1 on the corrected 
item calibrations from Step 3 (Oole)' The I-a items that were found to be 
unstable from one occasion to the next in Step 1, however, are not an­
chored (i.e., they are allowed to float). 

The Step 4 analyses produce corrected person measures at Time 2 
(~n2) that are referenced to a rating scale that is common to both Time 1 
and Time 2 and a set of items that are invariant across time. Any differ­
ences between these corrected person measures and the corrected mea­
sures obtained in Step 3 (~n1) indicate changes in persons, rather than 
interpretations of items or uses of the rating scale, over time. For each 
person, the corrected Time 1 measure (~n1c) and the corrected Time 2 
measure (~n2c) can be compared using the standardized difference as shown 
in Equation 3. Persons that exhibit large variability (e.g., Izl> 2.00) have 
changed over time. The analysis also produces calibrations for the I-a 
unstable items (i.e., the items that were allowed to float-0(l_Ol2). These 
calibrations are ignored. 
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Step 5: Correct the Time 2 Item Calibrations 

The final step in the procedure is to determine the extent to which 
item functioning changed over time while controlling for changes in per­
son measures. In Step 5, the Time 2 data are re-calibrated by anchoring 
the scale steps on the joint calibrations obtained in Step 2 ('tj ) and anchor­
ing the person measures on the corrected Time 2 estimates from Step 4 
(~n2c). All items are allowed to float. This analysis results in item calibra­
tions (for all items) at Time 2 (Oi2) that are corrected for changes in both 
the interpretation of the rating scale and the performance of people. To 
determine how much item functioning changed across occasions, the cor­
rected Time 1 item calibrations (Oil) are compared to the corrected Time 
2 item calibrations (oi2e). The comparison can be made by computing the 
standardized differences between these two estimates (Equation 3). This 
comparison is free from potential confounds due to changes in the use of 
the rating scale or the performance of persons across time. It is important 
to note that calibrations for items that were found to be unstable over time 
in the Step I analyses have been treated as different items in the estima­
tion of person measures regardless of how much their corrected calibra­
tions differ. 

Example 

The remainder of this article illustrates how this procedure can be 
applied to the measurement of change in questionnaire data. We demon­
strate this technique on data that are typical of many program evaluations 
(i.e., single group, pretest, intervention, posttest). Our analyses empha­
size how using the procedure results in different interpretations of how 
persons and items change over time. 

Participants 

The data for our illustration come from mathematics, science, and 
language arts teachers from 14 public and private secondary schools in 
different regions of the United States. These teachers participated in a 
nine-month program designed to help them develop portfolio assessments. 
Approximately 12 teachers from each school participated in the program 
(n = 168). At the beginning of the school year (in September), teachers 
responded to a questionnaire designed to assess the strength with which 
teachers perceive potential barriers to the implementation of a portfolio 
assessment program to be problematic (Wolfe and Miller, 1997). After 
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participating in the program for an academic year (in June), teachers com­
pleted the questionnaire a second time. A comparison of a teacher's re­
sponses from September (Time 1) with the responses provided in June 
(Time 2) was interpreted as a measure of change in the teacher's percep­
tion of barriers to the implementation of portfolio assessments. Complete 
data for Time 1 and Time 2 were available for 117 of the 168 teachers 
who participated in the program (a 30% attrition rate). 

Instrument 

The questionnaire asked teachers how problematic they perceived 
30 potential barriers to the implementation of a portfolio assessment sys­
tem to be. The barriers referenced issues such as the amount of time re­
quired to use portfolios, resistance from people to the idea of using 
portfolios, the difficulty of assigning scores to portfolio entries, changes 
in instruction that are required when portfolios are used, and the avail­
ability of resources for using portfolio assessment. Each barrier was for­
matted as the stem for a four-point Likert-type item. Teachers responded 
to each barrier by indicating whether the barrier is a(n) unlikely, minor, 
difficult, or serious problem. For each of the 30 barriers, teachers indi­
cated the option that best describes the difficulty of that specific barrier. 
Unlikely problems were defined as those that would likely have no impact 
on the teacher's use of portfolios. Minor problems were those that may 
cause the teacher to use portfolios differently than they would be used in 
an ideal situation. Difficult problems were defined as problems that may 
cause the teacher to reconsider using portfolios in his or her classroom. 
Serious problems were those that would cause the teacher not to use port­
folios at all. 

Analyses and Results 

These data were analyzed with a Rasch RSM. For substantive mean­
ing, all facets were scaled so that higher logit values were associated with 
more difficult portfolio implementation. That is, higher values of teacher 
measures were associated with the perception of portfolio implementa­
tion as being more difficult, and higher values of barrier and rating scale 
step calibrations were associated with barriers that are more difficult to 
overcome. In each of the following sections, we detail the steps of the 
anchoring method described by Wright (l996a). Prior to illustrating the 
five steps, however, the fit of the data to the RSM is evaluated. 
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Evaluating Fit 

For Step 1, the data were placed in two data sets-one containing 
the teachers' responses from September (Time 1) and the other contain­
ing teachers' responses from June (Time 2) (see Figure 2). Each data set 
contained three variables: a) teacher (person) identifier, b) barrier (item) 
identifier, and c) the teacher's response (rating) to that barrier. In our de­
scription, we use FACETS (Linacre, 1989) to obtain parameter estimates 
for these data sets. It should be noted, however, that these analyses can be 
performed using any item response software that allows for the analysis 
of rating scale data and the anchoring of measurement facets. The two 
data sets, one from each of the two occasions, were calibrated on separate 
FACETS analyses. An example FACETS command file for performing 
Step 1 on the September data is shown in Appendix A. A similar com­
mand file is written for the June data. These analyses result in two sets of 
barrier calibrations and teacher measures-one for the September data 
and one for the June data. 

To evaluate the fit of the data to the model, the standardized mean 
square fit statistics (Equation 2) for the parameter estimates of each teacher 
and barrier were examined at each occasion. Teachers and barriers with 
fit statistics greater than two were flagged as potential problems. How­
ever, no teachers or barriers were eliminated from the analyses based on 
misfit because inspection of their response pattems revealed no conspicu­
ous anomalies. Sixteen of the teachers (14%) showed poor fit to the model 
in the September data and twelve (10%) showed poor fit in June. Three of 
the barriers in our questionnaire (10%) had large fit statistics for the Sep­
tember data and only one (3%) showed poor fit in June. 

Step 1,' Evaluate Rating Scale and Barrier Invariance 

As described in the previous section, in Step 1 the September and 
June responses were analyzed separately so that each teacher, barrier, and 
rating scale step received a pair of parameter estimates-one for Septem­
ber and one for June. The pair of estimates for each teacher, barrier, and 
rating scale step are referred to here as ~nl and ~n2' Oil and 0i2' and 'tjl and 
'tj2, respectively. In subsequent sections, these estimates will also be re­
ferred to as uncorrected estimates. To determine whether differences be­
tween ~nl and ~n2 are valid indicators of change in teacher measures over 
time, we computed the standardized differences (Equation 3) between 
each pair of step calibrations ('t I and 't) and each pair of barrier cali bra­

.I J 
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tions (Ojl and OJ)' The parameter estimates for September and June, their 
standard errors, and the associated standardized differences are shown in 
Table 1 and Figure 4. 

The analyses from Step 1 reveal that there are large differences in 
the way that the rating scale steps were used at September and June as 
indicated by the large standardized difference for two of the three scale 

Table 1 

Rating Scale Step Calibrations from Step 1 for September and June 

Scale Step 'tjl Logit 'tjl Error 'tj2 Logit 'tj2 Error z 

oto 1 -1.82 0.04 -1.24 0.04 -10.25 

1 to 2 0.05 0.05 0.12 0.05 -0.99 

2 to 3 1.77 0.10 1.13 0.08 5.00 

Mean 0.00 0.06 0.00 0.06 ·2.08 

(SD) (1.80) (0.03) (1.19) (0.02) (7.68) 

Note: 'tjl represents the rating scale step calibrations obtained in Step 1 for Sep­
tember, and 'tj2 represents the rating scale step calibrations obtained in Step 1 
for June. Izl>2.00 is considered large enough to indicate unstable uses of rating 
scale steps across occasions. 

2 

September 

-2 2 

June 

Figure 4. Scatter plot of uncorrected September and June barrier calibrations. 

http:Izl>2.00
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step calibrations (Table 1). Specifically, the difference between Septem­
ber and June scale steps for the 0 to 1 and the 2 to 3 transitions are so 
much larger than their standard errors that their invariance across time is 
suspect. Furthermore, several of the barriers showed unexpectedly large 
changes in their calibrations over the two administrations of the question­
naire. In fact, 7 of the 30 barriers (23%) have absolute standardized dif­
ferences greater than 2.00 (i.e., 0 =23) as evidenced by the points falling 
outside of the 95% confidence bands shown in Figure 4. This is a large 
percentage of barriers when compared to the expectation derived from 
the standard normal distribution (about five percent). The largest change 
in barrier calibrations, indicated as point A on the scatterplot, was 4.49 
standard errors (from -0.58 to -1.68 logits). In addition, the standard de­
viation of the standardized differences (1.80) is considerably larger than 
the expected value of 1.00. These statistics suggest that differences in the 
functioning of barriers and rating scale steps over time may cloud any 
interpretations that we make of differences in teacher measures, so our 
example proceeds with Steps 2 through 5 of Wright's (1996a) correction 
procedure. 

Step 2: Correct the Scale Calibrations 

In Step 2 of the procedure, a common rating scale is created so that 
teacher attitudes and barrier severity estimates from September and June 
can be estimated in a common frame of reference. To this end, we stack 
the two data sets from Step 1, reassigning teacher identifiers to each teacher 
for the June responses (as shown in Figure 3). In our example, we simply 
added 1000 to the original identifier (as shown in the example FACETS 
command file presented in Appendix B). Because this step of the analysis 
portrays each teacher as being a different person in June than in Septem­
ber and allows barriers to remain stable across administration of the ques­
tionnaire, the output of this command file results in a pair of measures for 
each teacher and a single calibration for each barrier. All of these values 
are ignored. The rating scale step calibrations ( ~) from this analysis, how­
ever, are of interest and will be utilized as anchor values for the remaining 
steps of the procedure. Table 2 compares the scale step calibrations from 
Step 1 of the procedure to those obtained from Step 2. As one would 
expect, the values from Step 2 (i.e., the step calibrations for the scale that 
are common to September and June) are between the two values obtained 
in Step 1 (i.e., the step calibrations for the separate September and June 
scales). In addition, because each calibration is based on a larger number 
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Table 2 

Rating Scale Step calibrations from Step 1 and Step 2 

Scale Step tjl Logit tjl Logit tjc Logit tjc SE 

oto 1 -1.82 -1.24 -1.46 0.03 

1 to 2 0.05 0.12 0.10 0.03 

2 to 3 1.77 1.13 1.36 0.06 

Mean 0.00 0.00 0.00 0.04 

(SD) (1.80) (1.19) (1.41) (0.02) 

Note: 'tjl represents the rating scale step calibrations obtained in Step 1 for 
September, 'tj2 represents the scale step calibrations obtained in Step 1 for June, 
and 'tjc represents the scale step calibrations obtained in Step 2 for the com­
bined September and June data set (i.e., the common scale). 

of observations, the standard errors of these calibrations are smaller than 
those for the Step 1 calibrations. 

Step 3: Corrected September Estimates 

In Step 3, corrected estimates are obtained for teachers (~n) and 
barriers (Oil) in September by anchoring rating scale steps on the values 
obtained in Step 2 ('tjJ Appendix C shows an example FACETS com­
mand file for this analysis. Note that the command file is the same as the 
command file used in Step 1 with the exception that rating scale steps are 
now anchored on their 'r. values. The data file is the same one used for the 

JC 

September analysis in Step 1. The Step 3 analyses result in two sets of 
values for the September data. The corrected teacher measures (~n) and 
the corrected barrier calibrations (Oil) are used as the basis for measuring 
changes in teachers and barriers in Steps 4 and 5. These estimates are also 
referred to as the corrected September estimates. 

Step 4: Correct the June Teacher Measures 

In Step 4, the common rating scale step calibrations from Step 2 ('tj) 
and the corrected barrier calibrations obtained in Step 3 (OJ Ie) for the 0 
(23) items that were found to be invariant across time in the Step 1 analy­
ses (referred to here as 001) are used as anchors so that corrected teacher 
measures (~n2e) can be estimated for the June data. As shown in Appendix 
D, the seven barriers that were found to be unstable across time in Step 1 
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are not anchored (i.e., they are allowed to float). Note that new calibra­
tions (0(100)2) are obtained for these barriers in Step 4, but these values are 
ignored. Otherwise, the procedures for analyzing the June data are the 
same as they were in Step 1. The resulting teacher measures (~n2) have 
been corrected for changes in perceptions of barriers and uses of the rat­
ing scale over time through this anchoring process. As a result, a compari­
son of the corrected June teacher measures (~n2c) with the corrected 
September teacher measures (~nlc) reveals how people have changed over 
time without confounding from changes in barrier or rating scale func­
tioning. This comparison can be made by examining the standardized dif­
ference (Equation 3) for each teacher's pair of corrected measures. 

Comparison of Uncorrected and Corrected Teacher Measures 

Figure 5 displays the uncorrected and corrected measures for the 
117 teachers in this study. This scatter plot shows that, overall, the stan­
dardized differences that were based on the corrected teacher measures 
were greater than those based on the uncorrected measures. This is evi­
dent from the fact that the majority of the points fall above the identity 
line in Figure 5. That is, teachers appear to have a more positive view as 
a result of participation in the program when the corrected measures are 
considered. For example, the teacher represented by point A had a 

7 
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Figure 5. Scatter plot of uncorrected and corrected teacher standardized 
differences. 
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Z d = -5.78 and a z d = -5.40. Although there were only minor 
uncorrecte correcte 

differences in most of the teacher standardized differences that were 
based on the uncorrected and the corrected measures (r = .99), the 
correction method made noticeable differences for some teachers. This 
is particularly true for teachers who had positive standardized differ­
ences (i.e., showed a decreased sensitivity to barriers between the pre­
test and posttest) as evidenced by the fact that the points are more 
dispersed in the upper right quadrant of Figure 5. As shown, the teach­
ers included in subset B are more dispersed than are other teachers in 
the sample. As for changes in individual teachers' standardized differ­
ences, the largest discrepancy between teacher standardized differences 
between the uncorrected and corrected teacher measures was 0.97 (i.e., 
Z d = -0.77 and Z d = -1.74), indicated in the scatterplot asuncorrecte correcte 

point C. 

Table 3 summarizes how the application of the method for measuring 
change influenced the distributions of teacher measures. This table shows 

Table 3 

Uncorrected and Corrected Teacher Measure Summary Statistics 

Statistic Uncorrected Measures Corrected Measures 

Number with Fit> 2 29 (12%) 26(11%) 

Mean (z) -0.94 -0.53 

Number with Significant z 57 (49%) 54 (46%) 

SD (z) 2.43 2.33 

Note: Number with fit> 2 represents the number of teachers with large fit 
statistics summed across both occasions. Therefore the percent shown is the 
total number of misfitting teachers divided by 234 (117 x 2). Mean (z) is the 
average standardized difference across the 117 teachers, and SD (z) is the 
standard deviation of the standardized differences. Number with significant z 
represents the number of teachers with absolute standardized differences> 2. 

that the utilization of the correction method resulted in slightly fewer 
misfitting teachers (% t d = 12%, % t d = 11 %). In addition, the cor­uncorrec e corree e 

rection method also resulted in smaller differences between pretest and 
posttest measures as evidenced by the mean standardized difference (Mean 
zuncorrected =-0.94, Mean zcoITected =-0.53). As a result, we would draw some­
what different conclusions about the amount of change that teachers exhib­
ited, depending on whether we interpret the uncorrected or the corrected 
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measures. This observation is supported by the fact that a smaller percent of 
the teachers' corrected absolute standardized differences were greater than 
two (% ted = 49%, % d =46%). Not only would our interpretation 

uncorrec correcte 

of the amount of change exhibited by the group of teachers change, but so 
would our interpretation of which teachers changed. Comparison of the 
standardized differences revealed that different conclusions would be drawn 
about 13 (11 %) of the teachers based on the uncorrected and corrected stan­
dardized differences. Of course, the majority of these teachers had smaller 
standardized differences when their measures were corrected. 

Step 5: Correct the June Barrier Calibrations 

In Step 5, the common rating scale step calibrations from Step 2 (''tj ) 

and the corrected person measures for June obtained in Step 4 (~n2c) are 
used as anchors so that corrected barrier calibrations can be estimated for 
the June data. As shown in the example command file in Appendix E, this 
anchoring is the only difference between the analyses of the June data for 
Steps 1 and 5. The resulting barrier calibrations (Oi2) have been corrected 
for changes in teachers and uses of the rating scale over time. The cor­
rected June barrier calibrations can be compared to the corrected calibra­
tions for September (Oil) obtained in Step 3 to identify how the perception 
of barriers changed over time. As in the previous analyses, this compari­
son is made by examining the standardized difference (Equation 3) for 
each barrier's pair of corrected calibrations. 

Comparison of Uncorrected and Corrected Barrier Calibrations 

Figure 6 displays the uncorrected and corrected calibrations for the 30 
barriers in this study. This scatter plot shows that there were larger differ­
ences between the standardized differences that were based on the uncor­
rected and the corrected calibrations than for the teacher measures as 
evidenced by the wider dispersion of points around the identity line. How­
ever, the correlation between corrected and uncorrected standardized dif­
ferences for barrier calibrations is still strong (r = .93), albeit somewhat 
inflated by the outlier represented by point A on the scatterplot. This re­
sulted in changes in individual barriers' standardized differences as large as 
1.42 (i.e., zuncorrectcd =-1.52 and zconected =-2.94, point B), depending on whether 
the uncorrected and corrected calibrations are considered. 

Table 4 summarizes how the application of the method for measur­
ing change influenced the distributions of barrier calibrations. This table 
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Figure 6. Scatter plot of uncorrected and corrected barrier standardized 
differences. 

Table 4 

Uncorrected and Corrected Barrier Calibration Summary Statistics 

Statistic Uncorrected Calibrations Corrected Calibrations 

Number with Fit> 2 4 (7%) 2 (3%) 

Mean (z) -0.01 -0.09 

Number with Significant z 7 (23%) 7 (23%) 

SD (z) 1.80 1.88 

Note: Number with fit> 2 represents the number of barriers with large fit sta­
tistics summed across both occasions. Therefore the percent shown is the total 
number of misfitting barriers divided by 60 (30 x 2). Mean (z) is the average 
standardized difference across the 30 barriers, and SD (z) is the standard devia­
tion of the standardized differences. Number with significant z represents the 
number of barriers with absolute standardized differences> 2. 

shows that the utilization of the correction method resulted in fewer 
misfitting barriers (% . d =7%, % I = 3%). In addition, the cor­uncorrecte' correctec 

rection method also resulted. in larger differences between pretest and 
posttest measures as evidenced by the mean standardized difference (Mean 
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Z d =-0.01, Mean Z d =-0.09). Again, this result would lead us to 
uncorrecte corrccte 

draw somewhat different conclusions about the nature of change in this 
study, depending on whether we interpret the uncorrected or the corrected 
barrier calibrations-with the corrected measures we would say that teach­
ers changed less and barriers changed more than they did when uncor­
rected values are considered. And, as was true for the teacher measures, 
we would draw different conclusions about several of the individual bar­
riers based on the uncorrected and corrected standardized differences. 
Decisions concerning a total of six of the barriers (20%) would be differ­
ent (half moving from significant to non-significant and half moving from 
non-significant to significant). 

Conclusions 

We have illustrated a procedure for removing potentially-confound­
ing sources of variability from the measures of changes in persons over 
time. Application of this procedure to the data in our example revealed 
four things about our perception of change in these data that were not 
apparent when this correction procedure was not applied. First, use of this 
procedure reduced the perceived overall change exhibited by this group 
of teachers. That is, depending on whether teacher measures were cor­
rected or not, a different magnitude of change in teacher measures from 
pretest to posttest was observed. Second, the procedure resulted in changes 
in the perception of which teachers changed over time. In the example 
gi ven here, we would draw different conclusions about 11 % of the teach­
ers as a result of applying the procedure. Third, the application of the 
procedure resulted in better fit of the teacher measures to the RSM. By 
removing the confounding of changes in perceptions of barriers from the 
teacher measures and fluctuations in the use of the rating scale, we were 
able to produce better measures of our teachers. Finally, we were able to 
detect changes in the perceptions of items over time that were not appar­
ent without the correction procedure. In fact, we would draw different 
conclusions about 20% of the items after applying the correction proce­
dure to our data. 

Overall, this procedure seems useful for disentangling changes in 
the item functioning and rating scale use from changes in person perfor­
mance when Likert-type questionnaires are used to measure the impact 
that a program has in participants. As a result, the procedure could prove 
useful for program evaluators who are interested in measuring changes in 
attitudes and opinions. We suggest four directions for further exploration 
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of this procedure. One direction would be to determine how well the method 
can be adapted to multi-faceted measurement contexts or to measurement 
models based on different response structures (e.g., partial credit mod­
els). Often program evaluations are ongoing and involve measuring 
changes across several consecutive years, so a second direction for future 
work might involve extending this correction procedure to settings with 
more than two measurement occasions. Third, it would be interesting to 
compare this method to other methods for disentangling sources of change 
in questionnaire data. For example, Chang and Chan (1995) identified 
four Rasch-based methods for measuring change that are distinct from 
the one presented in this article. Comparison of these methods would re­
veal consistencies and differences in the ways that change is depicted. Of 
course, because there are multiple methods, such a comparison would 
probably lead to conflicting results. Therefore, we suggest a fourth direc­
tion for future research concerning the variety of models for measuring 
change over time. We believe that any work that is based on these models 
is incomplete without evidence that the change that is being detected is 
indeed true change. As a result, we believe that it will be necessary to use 
simulations to determine the adequacy with which of each of the variety 
of methods recovers true change over time. 
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Appendix A. FACETS Command File for Step 1 

Ti tle = STEP 1, TIME 1: -EVALUATE SCALE AND BARRIER 
INVARIANCE 
Output = STEP1Tl.0UT,STEP1Tl.ANC 
Scorefile = STEP1Tl.S 
Facets = 2 
positive = 1,2 
Arrange == m,f 
Models == 
?,?,LIKERT 

* 
Rating Scale=LIKERT,R3 
O==UNLIKELY 
l==MINOR 
2=DIFFICULT 
3==SERIOUS 

* 
Labels = 

1,TEACHER 

1 Tli teacher 1 time 1 

2 == T2i teacher 2 time 1 


117 == Tl17i teacher 117 at time 1 

* 
2 ,BARRIER 


1 == Bli barrier 1 

2 == B2i barrier 2 


30 == B30i barrier 30 
Data == STEP1Tl.DATi Time 1 data configured as shown 
in Figure 1 
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Appendix B. FACETS Command File for Step 2 

Title = STEP 2: CREATE COMMON SCALE CALIBRATIONS 
Output = STEP2.0UT,STEP2.ANC 
Scorefile = STEP2.S 
Facets = 2 
positive = 1,2 
Arrange = m,f 
Models = 
?,?,LIKERT 

* 
Rating Scale=LIKERT,R3 
O=UNLIKELY 
l=MINOR 
2=DIFFICULT 
3=SERIOUS 

* 
Labels = 

1,TEACHER 
1 = Tl; teacher 1 time 1 

2 = T2; teacher 2 time 1 

117 = Tl17i teacher 117 at time 1 

1001 = Tli teacher 1 time 2 


1002 = T2i teacher 2 time 2 


1117 Tl17; teacher 117 at time 2 

* 
2 ,BARRIER 


1 = Bl; barrier 1 

2 = B2; barrier 2 


30 = B30; barrier 30 
data STEP2.DATi Time 1 & Time 2 data stacked as in 
Figure 2 
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Appendix C. FACETS Command File for Step 3 

Title = STEP 3: CORRECT TIME 1 ESTIMATES 
Output = STEP3.0UT,STEP3.ANC 
Scorefile = STEP3.S 
Facets = 2 
positive = 1,2 
Arrange = m,f 
Models = 
?,?,LIKERT 

* 
Rating Scale=LIKERT,R3 
O=UNLIKELY,O,Ai ALWAYS ANCHOR ON ° 
1=MINOR,-1.46,Ai ANCHOR ON VALUE FROM STEP 2 
2=DIFFICULT,0.10,A 
3=SERIOUS,l.36,A 

* 
Labels = 

1,TEACHER 
1 = T1; teacher 1 time 1 

2 = T2i teacher 2 time 1 

117 = T117i teacher 117 at time 1 
* 

2 ,BARRIER 

1 = B1i barrier 1 


2 = B2i barrier 2 


30 = B30i barrier 30 
data = STEP1T1.DAT; Time 1 data as shown in Figure 1 
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Appendix D. FACETS Command File for Step 4 

Title = STEP 4: CORRECT TIME 2 TEACHER MEASURES 
Output = STEP4.0UT,STEP4.ANC 
Scorefile = STEP4.S 
Facets = 2 
positive = 1,2 
Arrange = m,f 
Models = 
?,?,LIKERT 

* 
Rating Scale=LIKERT,R3 
O=UNLIKELY,O,A; ALWAYS ANCHOR ON 0 
1=MINOR,-1.46,A; ANCHOR ON VALUE FROM STEP 2 
2=DIFFICULT,O.10,A 
3=SERIOUS,1.36,A 

* 
Labels = 

1,TEACHER 
1001 = Tl; teacher 1 time 2 

1002 = T2; teacher 2 time 2 

1117 = Tl17j teacher 117 at time 2 

* 
2,BARRIER,A 

1 Bl,-.46; barrier 1 (invariant) anchored on 
Step 3 value 

2 B2; barrier 2 (unstable) with no anchor value 

30 = B30,-.51; barrier 30 (invariant) anchored on 
Step 3 value 
data = STEP1T2.DATj Time 2 data as shown in Figure 1 

http:B30,-.51
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Appendix E. FACETS Command File for Step 5 

Title = STEP 5: CORRECT TIME 2 ITEM CALBRATIONS 
Output = STEP5.0UT,STEP5.ANC 
Scorefile = STEP5.S 
Facets = 2 
positive = 1,2 
Arrange = m,f 
Models = 
?,?,LIKERT 

* 
Rating Scale=LIKERT,R3 
O=UNLIKELY,O,A; ALWAYS ANCHOR ON ° 
1=MINOR,-1.46,A; ANCHOR ON VALUE FROM STEP 2 
2=DIFFICULT,0.10,A 
3=SERIOUS,1.36,A 

* 
Labels = 

1,TEACHER,A 
1001 T1, .34; teacher 1 time 2 anchored on Step 

4 value 
1002 T2, .01; teacher 2 time 2 anchored on Step 

4 value 

1117 = Tl17,-.61; teacher 117 time 2 anchored on 
Step 4 value 
* 

2,BARRIER 

1 = B1; barrier 1 


2 = B2; barrier 2 


30 = B30; barrier 30 
data = STEP1T2.DAT; Time 2 data as shown ln Figure 1 

http:Tl17,-.61
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Introduction 

In the clinical and research literature, there is a dearth of good clinical 
descriptions of grades of disease severity which are generally implicit 
and acquired from an apprenticeship style of clinical training. Under 
these circumstances it is not surprising that agreement studies have pro­
duced less than optimal results (Charman, Varigos, Home, and Oberklaid, 
1999; Sackett, et ai., 1991). The extent of agreement, in general, has been 
moderate only. Moreover, agreement appears to vary such that it has been 
better with "mild" grades of severity than with "moderate" and "severe" 
grades (Charman, et aI., 1999; Hall, et ai., 1987). 

Such findings have been noted in studies of agreement on grades of 
severity of Atopic Dermatitis (AD) (for example, European Task Force on 
Atopic Dermatitis, 1993). These findings suggest that the bases for clinical 
judgements of grades of AD severity could be more clearly defined. If 
definitions are clear, agreement should improve and response biases dimin­
ished (Streiner and Norman, 1989; Spiteri, et aI., 1988). Moreover, defini­
tions would also help to ensure that a scale or measure is "valid". 

It should be noted that there is a web-site (http:// 
www.adserver.sante.univ-nantes.fr/) which does provide photographs for 
selected morphological features at severity grade levels, 1, 2 and 3. This 
site is an adaptation from a CD-ROM developed for the European Task 
Force on AD (European Task Force on Atopic Dermatitis, 1997). How­
ever, the clinical photographs and the morphological features were de­
rived from consensus: They are not necessarily statistically reliable and 
valid. This point is emphasised by the reported 54% agreement on grade 
1 for one of the morphological features (edema/populations) and yet, this 
feature was retained (presumably) because of clinical commitment. The 
overall SCORAD AD severity score is calculated from a weighted linear 
combination of all of the (a priori) selected intensity features, including 
edema/populations, extent and subjective symptoms of pruritus and in­
somnia. There does not appear to be any direct relationship between the 
severity score and the definitions of AD severity. 

It is the aim of this paper to report on a study to establish the validity 
of the ADAM measure (Charman, et aI., 1999) and in so doing develop 
clear definitions of grades of severity to be derived from mathematically 
modelling severity of AD. The ADAM measure requires clinicians to 
record ratings which are clinical judgements of grades of severity. Each 

http:www.adserver.sante.univ-nantes.fr
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sign and symptom is rated as present or absent and, if present, present to 
a degree of severity, that is, none, mild, moderate or severe. 

Clinical rating behaviours can be analyzed with mathematical (or 
measurement) models available to disciplines such as education, psychol­
ogy and psychiatry. Essentially, modelling is the search for "latent trait" 
where latent trait is a statistical concept to "explain the consistency of 
people's responses to the items in the scale" (Streiner and Norman, 1989, 
p. 51). It is assumed that the latent trait underscores the pattern of ratings 
on the items of an measure and lies on a continuum from "less" to "more" 
(Wright and Masters, 1982). Applied to medical ratings, latent trait can 
be conceptualised as severity of disease. 

In this study a variant of the Rasch measurement model, the Partial 
Credit model, was adopted for use as it can analyse items on ordered 
categories, "none", "mild", "moderate" and "severe". Moreover, the items 
can be evaluated independently of the sample upon which it is calibrated. 
This independence, or separation, is mathematically expressed as an ad­
ditive system of the person's qualities (case estimates) and the item level 
or "difficulty" (item estimates). This additivity is achieved with a log 
transformation of the raw score to produce a logit score. The effect is that 
items and cases are measured on an interval scale with a common unit 
(Wright and Masters, 1982; Wright and Linacre, 1989). The items are 
distributed along the scale, which may, if the item fit is good, be 
conceptualised as the latent trait scale. Cases, too, are distributed along 
the same latent trait continuum from "less" of the trait ("mild") to "more" 
of the trait ("severe"). Cases (and items) that do not "fit" for whatever 
reasons (for example, misdiagnosis) may be identified and omitted from 
further analysis. 

Method 

Participants: Children (N =171) with active AD who were consecu­
tive patients to dermatology clinics at the Royal Children's Hospital over a 
twelve month period were recruited. The children were new and old patients 
to the clinic (mean age =54 months, ranging from 4 to 193 months). There 
were 98 (57.3%) males (mean age = 47 months) and 68 (39.8%) females 
(mean age == 62 months). Five (2.9%) children did not have their sex re­
corded and 19 (11.1 %) children did not have their age recorded. Doctors: 
There wen~ seven available staff members comprised of three dermatologists 
and two dermatology trainees, and two medical trainees on six month rota­
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tions under the supervision of the Head of the Unit. The ADAM measure: 
The ADAM measure (Charman, et aI., 1999) comprises items scored on 
either a four point rating scale (0 "none", 1 "mild", 2 "moderate" or 3 "se­
vere") or a two point scale ("present" or "absent"). AD morphology items 
were for erythema, scale/dryness, lichenification and excoriations. Sites were 
face, arms, hands, legs, feet, trunk, head and neck, and flexures. Procedure: 
Participants were assessed during scheduled appointments in the dermatol­
ogy clinics of the Royal Children's Hospital in Melbourne. Their treating 
doctor was instructed to rate the AD "as it is now" using the ADAM measure. 
The doctor was also advised that, where AD was absent, a blank (rather than 
a written zero) could be left for that item on the measure. Analysis: The 
Partial Credit analysis was computed with a software package called QUEST 
for MS-DOS, Student Version (1.3) (Adams and Khoo, 1993) using thresh­
old as a measure of item difficulty. The items of the ADAM measure which 
were analysed consisted of the 28 site and morphology items. The remaining 
items did not refer to clinical manifestations of AD and were therefore ex­
cluded from the analysis. 

Results 

The item estimates (thresholds) were plotted as a "map" which 
revealed a bimodal distribution with almost all items coded as "severe" 
(3) located together at one end of the scale. These severe item estimates 
were based upon low frequencies of endorsement by assessing derma­
tologists. Therefore, "severe" was re-coded as "moderate/severe" and 
the data re-analysed. The new item estimates are provided in Table 1 
and an item estimate map is provided as Figure 1. The Item Separation 
Reliability was R =.76, with SD Adjusted=.58. The Infit and Outfit 
Mean Squares were M=1.00 and .99 (SD=.12 and .23 respectively) and 
t values were .03. and .01 (SD=1.2 and 1.3 respectively). Thus, the 
summary statistics were within the accepted range (that is, M=l, t=O). 
The items of the ADAM measure fitted the model. The Case Separation 
Reliability was R =.86, with SD Adjusted=.86, with fit mean squares 
consistent with those expected if the model holds, that is, M= 1.0 1 and 
.99 (SD=.39 and .44 respectively). The t values were also consistent 
with the model, -.06 and .00 (SD= 1.44 and 1.07). respectively. 

The recoded data satisfied the requirement for uni-dimensionality with 
one item, erythema on the face, close to misfitting. Item estimates were 
distributed along a latent trait scale to be referred to as "AD Severity". 

http:Adjusted=.86
http:Adjusted=.58
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Tablel. 

Item Estimates (Thresholds) (N = 171 L = 30) 

The ADAM Measure: Thresholds INFT OUTFT INFT OUTFT 
Item Name 2 3 MNSQ MNSQ 

1. Pruritus -4.88 -1.56 .98 .77 .77 -2.3 -1.8 
2. Face/Scale -2.25 -AI 2.65 1.25 1.30 2.5 2.2 
3. FaceILichenification -AI .58 2.61 1.17 lAO 1.2 1.6 
4. FacelErythema -1.81 -.85 .88 1042 1.51 3.9 3.3 
5. FacelExcoriations -.34 .50 1.94 1.24 1.30 1.6 1.2 
6. Arms/Scale -2.56 -.29 2.62 1.08 1.13 .8 -1.3 
7. ArmslLichenification -1.41 -.013 .12 1.01 .99 .1 -1.2 
8. ArmslErythema -2.09 -.12 2.10 .88 .87 -1.2 -1.6 
9. ArmslExcoriations -.73 .073 .01 1.00 1.00 .0 1.5 
10. Hands/Scale -1.34 .30 2.22 1.00 0.99 .0 -.2 
11. HandslLichenification -.78 .11 2.98 .87 .79 -1.2 .1 
12. HandslErythema -.97 .29 NA .90 .84 -1.0 .0 
13. HandslExcoriations .09 .83 2.29 .89 .59 -.6 -1.1 
14. Legs/Scale -2.66 -.39 1.55 1.10 1.11 1.0 .7 
15. LegslLichenification -1.63 -.31 1.05 1.10 1.17 .9 .9 
16. Legs/Erythema -2.22 -.22 2.57 .89 .89 -1.1 -1.1 
17. LegslExcoriations -1.03 -.06 1.70 .92 .87 -.7 -1.1 
18. Feet/Scale -.91 .62 .95 .91 .88 -.7 -1.0 
19. FeetILichenification -047 .091 .82 .88 .69 -.9 -104 
20. FeetlErythema -.66 .31 2.83 .85 0.77 -1.3 .9 
21. FeetlExcoriations .09 .83 2.29 .83 .55 -.9 1.2 
22. Trunk/Scale -2.3 4.04 2.03 1.03 1.03 .3 -.9 
23. Trunk/Lichenification -.78 .11 1.56 .98 1.10 -.1 -.7 
24. TrunklErythema -1.56 .27 2.26 1.04 1.06 A -.7 
25. TrunklExcoriations -047 .54 1.94 1.08 1.34 .6 1.5 
26. Scalp -.57 1.03 0.97 .5 -.2 
27. NapkinArea -.03 1.04 1.00 A .1 
28. Head & NeckFlexures -1.39 .99 1.01 -.2 .1 
29. Limb Flexures -2.15 1.09 1.31 1.11 2.1 
30. Global Severity Rating -5.28 -1049 1.21 .70 .70 -3.2 -2.6 
M .00 1.00 1.00 .0 .0 
SD .86 .15 .24 104 1.3 

NA Code 3 not used. 

However, it is yet to be established that this is an accurate description for 
the trait. 

Item placement 

To define the scale for "AD Severity", item placements along the 
item estimate map were examined to determine whether placements were 
consistent with the a priori order as provided by the demlatologists. Firstly, 
the moderate ("2") codes were at the more "severe" end of the scale and 
were all consistently higher than the mild ("1") codes. Trunk and face 
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Table 1) at code level 2 

Figure 1. Item estimates (thresholds) Map, 28 items (N=171) 

items (22 to 25 and 2 to 5 respectively) were evenly placed along the 
scale, suggesting that these two sites were common in all manifestations 
of AD and that the type of morphological feature on these sites dictated 
placement on the severity scale. Face lichenification and excoriation were 
at the severe end of the scale. Face erythema and scale/dryness were at 
the less severe end of the scale. Head and neck flexures and limb flexures 
(items 28 and 29) were on the "milder" end of the scale. Arms and legs 
were placed at the moderate and mild parts of the scale. 
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Excoriations at all sites (items 5, 9,13,17,21 and 25) were placed at 
the more severe end of the scale with hands and feet coded as moderate/ 
severe (items 13 and 21) at the extreme end ofthe scale. Mild excoriation 
on hands and feet had item estimates above the sample mean. Erythema 
(items 4, 8, 12, 16,20 and 24) was present along the scale, but grade of 
erythema did not clearly indicate grade of severity. Therefore erythema 
could be a distraction despite the belief that it is an essential feature of 
AD but is consistent with the clinical observations that the signs of AD 
are similar to those for inflammation. Scale/dryness (items 2,6, 10, 14, 
18, and 22) was present across the continuum. Therefore, scale/dryness 
was an essential feature of "AD Severity" in all grades. This scale pattern 
is consistent with the clinical practice of prescribing moisturizers as an 
ameliorating or even a preventive treatment to avoid the anticipated de­
velopment of lichenification and excoriations. 

The number and distribution of the items might indicate that some 
of the items could be redundant for the purposes of measurement. How­
ever, apart form Face/Erythema, the fit statistics for the items are satisfac­
tory. Moreover, clinically, cases may have equivalent severity scores but 
have quite different AD distributions and AD morphologies. 

This ordering of difficulty as depicted by thresholds (see Table 1) was 
somewhat surprising in that lichenification was on the "less severe" end of 
the scale compared with excoriations. It was expected that excoriations 
were a precursor to lichenification, that is excoriations would have had 
lower thresholds. Either this proposition was incorrect or the calibration 
sample was a "chronic" sample with their skin already lichenified when the 
ratings took place. The sample was indeed "chronic", as the mean age was 
4Y2 years, with mean onset of AD within the first 12 months and having 
waited a mean of 6 months for an appointment with the dermatologists. 

Examination of the pattern of step 2 thresholds showed approximately 
equivalent thresholds for scale, erythema, lichenification and excoriations. 
Thus, severe manifestations of AD included all four morphological features. 

Case Placement 

The case fit estimates were M= -0.73, SD =.93 (i.e., the mean was within 
one SD of zero), and the range of case fit estimates varied from -3.29 to +1.99. 
The mode consisted oftwo equally occurring estimates, -1.13 and -.62. Both of 
these values fell in the "mild" end of the latent trait scale. Forty-two (24.4%) 
cases had positive case estimates, that is estimates> O. Three (1.7%) cases 
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were "too" conforming to the model (Wright and Masters, 1982), with raw 
scores of only 2, out of a possible maximum of 52 (estimates=-3.29), three 
standard deviations below the mean. When the original protocols for these 
three cases were examined, one case had mild scale on the face and anns, one 
case had mild scale on the arms only, and one had mild scale and mild licheni­
fication on the face. These three cases were retained as representative of"trivial" 
AD which were occasionally seen in clinic and who may have presented for 
review appointments after successful treatment. 

Concurrent validity 

Concurrent validity was explored by determining if placement of 
items along the scale could define grades of AD Severity. These defined 
"grades" were compared with the grades of severity as provided by rat­
ings on Global Rating of Severity, item 30 on the ADAM measure. Ac­
cording to the dermatologists' ratings on Global Rating of Severity, 
approximately 7% of the sample had severe AD, 48% had moderate AD, 
43% had mild AD and 2% had negligible AD. 

To define grades of severity based on the item placements on the latent 
trait scale, it was necessary to divide the scale into four sections, representing 
trivial, mild, moderate and severe. As the same scale defined case place­
ments, this case scale was divided so that each section represented the appro­
priate number of cases which were equivalent to the above percentages. 
Occasionally, where there were "tied" cases, the numbers in the section ex­
ceeded the percentage. The final details of the grades are provided in Table 2. 

Table 2. 

Logit Estimatesfor Grades ofAD Severity 

Total Score Case and Item Measurement 
Description Range LogitRange Error N 

Trivial 0-2 -3.29 .74 3 (2%) 
Mild 3 - 14 -2.84 to -.91 .32 to .61 75 (43.6%) 
Moderate 15 - 31 -.81 to .48 .27 to .31 77 (45.3%) 
Severe 32 - 46 .56 to 1.99 .28 to .41 16 (9.3%) 

Total 171 (100%) 

In order to test whether there was an association between the grade 
of severity determined by the logit range and the grade of severity rated 
directly by dermatologists, a frequency table was constructed and is pro­
vided as Table 3. 

http:estimates=-3.29
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Table 3. 

Frequency of Global Ratings of Severity for Each Logit Range 

LogitRange Trivial Mild Moderate Severe Total 

Trivial 2 0 0 3 (1.8%) 

Mild 2 53 19 0 74 (43.3%) 

Moderate 0 19 52 7 78 (45.6%) 

Severe 0 0 11 5 16 (9.4%) 

Total 3 74 82 12 171 

% 1.8% 43.3% 48.0% 7.0% 100.0% 

Because there were 8 cells with expected cell size less than 5, the 
table was collapsed by combining the cells for trivial global rating and 
trivial logit scores with the mild cells. This produced a 3 by 3 table, 
X2(4)=65.4, p<.Ol. Thus grades based upon the Partial Credit estimates 
(logit ranges) were not independent of the Global Ratings of Severity 
(code levels) by the dermatologists and agreement was "marginal", 
kappa=.40, SE=.06, p<.05. Inspection of the table revealed some differ­
ences in the two gradings. Dermatologists more frequently rated AD as 
"mild" compared to the logit estimates, with 53 agreements and 42 (2,2, 
19 and 19) disagreements. Dermatologists less frequently rated AD as 
"severe" with only 5 agreements and 18 (7 and 11) disagreements. 

As stated above, because cases and items have a common scale, the 
cut-off points to define frequency of cases in each section also defined 
groups of items. These items were summarized as "word pictures" and 
are provided in Table 4. The last column in Table 4 consists of the derma­
tologists' clinical descriptions developed for the Global Rating item on 
the ADAM measure. 

It can be seen that word descriptions based upon the model provided 
more comprehensive and consistent definitions of grades of severity which 
matched the a priori clinical expectations. On the other hand, clinical 
description using "admittable" is somewhat vague and could be influ­
enced by a range of other criteria, such as whether a hospital bed was 
available, what psychosocial issues were salient for the patient and so 
forth. In short, the Partial Credit model of the latent trait, "AD Severity" 
does appear to have content, construct and concurrent validity. 

http:kappa=.40
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Table 4 

Descriptions ofGrades ofAD Severity 

Grade 	 Description based on item analysis Description by dermatologists 

Trivial 	 Mild scale on arms or legs 

Mild 	 Mild scale and erythema on face, arms A bit scaly, and a bit red. 
and/or legs, and possibly in the flex­
ures of the limbs. Mild erythema on 
the trunk. Mild lichenification on arms 
and/or legs. 

Moderate 	 Moderate/severe scale and erythema on Lichenification present. A few 
hands and feet. Moderate/severe li- exoriations. Fingermarks. No 
chenification of arms and/or legs and vesiculation. 
mild lichenification on other sites of the 
body. Mild excoriations on face, arms 
legs and/or trunk. AD is present on the 
scalp and head and neck flexures. 

Severe 	 Moderate/severe scale and lichenifi- Nodules exoriated. Lichenifi­
cation on other sites, including hands. cation widespread. Admittable 
Moderate/severe erythema on hands, or almost admittable. Vesicu­
feet and trunk. Moderate/severe ex- !ation. 
coriations on arms, legs, feet, face, 
trunk andjust appeared on hands and 
feet. There is AD on the napkin area. 

Visible AD 

Since hospital utilization and adherence may be related to whether 
AD is on visible sites (Mechanic, 1978), certain questions needed to be 
asked. These questions relate to how visibility of AD was accommodated 
within this latent trait model and if children with visible AD had higher 
dermatologists' severity ratings than children with no visible AD. To 
examine these questions, visible areas were defined as face and hands. 
The word pictures illustrate that, as the level of AD severity increased, 
the features of AD intensified on the face with moderate/severe face items 
on the severe end of the scale. Mild face scale was at the "trivial" end of 
the scale. It was only in the moderate and severe grades that morphologi­
cal features appeared and intensified on the hands. Thus, visibility of AD 
was associated with more severe "AD Severity". 
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Sex variations 

An analysis was undertaken to investigate whether there was a sig­
nificant difference in AD severity between males and females. Case esti­
mates were M = -.67, SD=.95 and M = -.80, SD=.93, for males (n=98) and 
females (n=68) respectively. The difference between the means was not 
statistically significant, F(l,I64)=.76,p=.39, with 5 missing cases. 

Since, these null results may be an outcome of the way in which the 
model was estimated using grouped data, the Partial Credit model was re­
estimated for males and females separately. The item estimates for each 
sex were plotted against each other and a regression line fitted to the data. 
One outlier, at 3 standard deviations, was identified. This outlier was 
moderate/severe excoriations on the face (FacelExcoriations). The male 
threshold for this item was .90. For females the threshold was 2.64 which 
is at the extreme end of the female "AD Severity" scale. Excoriations on 
the face were only seen in very severe manifestations of AD in females, 
and in males with less severe AD. Excoriations on the hands and feet 
were beyond two standard deviations and scored only in severe male AD. 
Thus Partial Credit analyses found that, when AD is mild to moderate, 
males were more likely to have excoriated faces and females to have ex­
coriated hands and feet. Only when AD is very severe AD do females 
have excoriated faces and males have excoriated hands and feet. 

Age variations 

Age variations have been reported by Rajka (1989). The infantile 
phase for AD is up to 2 years of age during which AD is found on the face 
and scalp. The childhood phase is between 3 and 11 years and AD is on 
the limbs. The adolescent phase is 12 years onwards and AD is mostly on 
the trunk and the hands (in more severe manifestations). To investigate 
whether these reported age patterns or variations of AD were found in 
this sample a Partial Credit analysis was performed. 

The numbers of patients in each of the age groups were 61, 44 and 
14. Consequently, the groups of patients older than 2 years were com­
bined. The Partial Credit model was re-estimated separately for infants 
(equal to or less than 2 years) and children (more than 2 years). The item 
estimates for infants and children were plotted against each other and a 
regression line fitted to the data. No outlying items were detected at three 
standard deviations. At two standard deviations the outlying items were 

http:F(l,I64)=.76,p=.39
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erythema and severe excoriations on the face and mild scale on the legs. 
Infants with mild AD did have AD (erythema) on the face. Infants with 
severe AD had AD on the face, hands and feet. Rajka (1989) stated that 
older children had AD on limbs. This too was confirmed. AD appeared 
on the limbs, but, only in children with mild AD. Older children with 
severe AD had AD on the face. Rajka (1989) also stated that AD on the 
flexures was not always present in infancy, and these sites only get in­
volved when the child is older than two years. Flexure item thresholds 
for infants and children were -.50 and -1.19 (for infants) and -.93 and ­
1.86 (for children). Once again, descriptions by Rajka (1989) have been 
confirmed. Flexures may not be present in infancy. However, some in­
fants did have AD on the flexures, but these cases had more severe AD 
than the older children who had AD in the flexures. 

Discussion 

Partial Credit analyses ofthe site and morphology items of the ADAM 
measure showed that items and cases were distributed along a continuous 
scale and that placements conformed with clinical expectations. The 
thresholds suggested that the sample had chronic AD rather than recent 
onset AD. Also, the model produced coherent "word pictures" of AD 
severity which compared favourably with clinically derived descriptions. 
Thus, the continuous scale was conceived as "AD Severity" and found to 
have content and construct validity. 

When the data was estimated separately for males and females, dif­
ferences emerged. Essentially, males had more visible AD at less severe 
AD. This may account, in part, for the apparent better prognosis for males. 
Perhaps, parents respond to the visibility of the AD in their male children 
by obtaining earlier treatment. When the data was estimated separately 
for infants and children, the clinical descriptions by Rajka (1989) were 
confirmed only for mild AD. The descriptions of moderate/severe AD 
had variations on these basic descriptions. 

The ADAM measure was designed to provide ratings of site and 
morphology together rather than separately as in previously published 
scoring systems. An earlier agreement study revealed, that like similar 
measures in clinical work, operational definitions of grades of AD sever­
ity were not well-enough defined (Charman, et aI., 1999). In this current 
study, the application ofPartial Credit modelling revealed "word pictures" 
and sex and age variations were identified. These word pictures consti­
tute operational definitions of grades of severity. 



174 CHARMAN AND VARIGOS 

The less reliable items and the ill-fitting items could be omitted from 
the ADAM measure. However, in doing this impOltant clinical informa­
tion may be missed. At this stage, instead, it is recommended that doctors 
have special training sessions in the identification and grading of licheni­
fication and erythema in particular. Face items, especially erythema on 
the face may be distractor items. There are many reasons why a patient 
might have a red face at the doctors. 

Use of clinical ratings of signs to characterise AD, or any other dis­
ease for that matter, is fraught with problems, not the least of which is the 
reliability of the ratings. The procedure adopted here is recommended as 
a basis for generating operational definitions of severity wherever grades 
are used as a basis for treatment. Unusual results such as the finding for 
erythema can inform and direct clinical training and practice and research. 
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The purpose of the present study was to investigate item and trait parameter recovery for 
Andrich's rating scale model using the PARSCALE computer program. The four factors 
upon which the simulated data matrices varied were (a) the distribution of the scale values 
for the items (skewed or uniform), (b) the number of category response options (4 or 5), 
(c) the distribution of known trait levels (normal or skewed), and (d) the sample size (60, 
125,250,500, or 1,000). Each condition was replicated 10 times resulting in 400 data 
matrices. Accurate item and trait parameter estimates were obtained for all sample sizes 
examined. As expected, sample size seemed to have little influence on the recovery of 
trait parameters but did influence item parameter recovery. The distribution of known 
trait levels did not seriously impact the item parameter recovery. It was concluded that 
Andrich's rating scale model allows for the use of considerably smaller calibration samples 
than are typically recommended for other polytomous IRT models. 
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When a model is employed to measure a latent construct, it is difficult to 
determine how accurate the model is by investigating the actual construct 
in the real world. The very nature of a latent construct means that it does 
not lend itself readily to the confirmation of a model's parameters using 
some computer program. Therefore, simulated data, where the latent con­
struct is perfectly known, are frequently used. Accuracy is typically as­
sessed in terms of the discrepancies between the known model parameters 
and those recovered by the calibration computer program. The present 
simulation study was performed to assess the accuracy of the PARSCALE 
(Muraki and Bock, 1993) computer program to estimate the parameters 
of Andrich's (1978a, 1978b) rating scale model, which is appropriate for 
attitude measurement. Several other item response theory models and 
computer programs have been assessed in similar types of studies. 

Most research in the area of parameter recovery has focused on the 
dichotomous item response models. These models have been useful for 
the construction, administration, and scoring ofcognitive ability or achieve­
ment tests (Hambleton, Jones, and Rogers, 1993). Far fewer studies have 
examined the accuracy of the polytomous item response models. One such 
study, by Reise and Yu (1990), looked at the recovery of item and ability 
parameters using the graded response model (Samejima, 1969) and the 
calibration program MULTILOG (Thissen, 1986). Three factors were 
manipulated: true ability distribution, true item discrimination distribu­
tion, and calibration sample size. A test length of 25 items with five re­
sponse categories per item was used for all conditions. Results indicated 
thal sample sizes of 500 or greater consistently provided true-to-estimated 
parameter correlation coefficients of 0.85 or larger. Root mean square 
error differences were concluded to be comparable with those reported in 
dichotomous model parameter recovery studies (Hulin, Lissak, and 
Drasgow, 1982; Yen, 1987). A sample of 500 for this study is equivalent 
to a 4: 1 ratio of sample size to the number of item parameters. 

Reise and Yu (1990) also found that the calibration sample size had 
little effect on the recovery of ability parameters, but influenced the re­
covery of item parameters. In addition, they concluded that the true abil­
ity distribution and true item discrimination magnitude influenced the 
recovery of ability and item parameters. Uniformly distributed true abil­
ity parameters and large true item discrimination values resulted in the 
best parameter recovery. 

Another parameter recovery study by Walker-Bartnick (1990) ex­
amined the accuracy of item parameter estimation for the partial credit 
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model (Masters, 1982) and the calibration program MSTEPS (Wright, 
Congdon, and Schultz, 1988). Three factors were manipulated: true theta 
distribution, ratio of sample size to number of parameters to be estimated, 
and number of response categories per item. The test length was held 
constant at 80 items. The results led Walker-Bartnick to conclude that the 
true theta distribution and the number of response categories per item did 
not affect the stability of the recovered parameters. Walker-Bartnick also 
concluded that a ratio of sample size to number of parameters of 2: 1 was 
the minimum sufficient for stable parameter recovery. It should be noted 
that the 2: 1 ratio for this study required fairly large sample sizes of 640 
and 800 for the five- and six-response categories conditions, respectively. 

A study by De Ayala (in press) examined parameter recovery using 
the nominal response model (Bock, 1972) and MULTILOG (Thissen, 1991) 
computer program. Three factors were studied: sample size ratio, true 
theta distribution, and item information level. Results indicated that as 
the ability distribution departs from a uniform distribution, the accuracy 
of the slope parameter recovery declines. De Ayala also concluded that a 
5:1 ratio of examinees to parameters will produce reasonably accurate 
item parameter estimates. 

Choi, Cook, and Dodd (1997) investigated the parameter recovery 
for the partial credit model using the MULTILOG (Thissen, 1991) cali­
bration program. The factors studied were the number of item param­
eters, step values per item, and sample size. Choi et al. recommended that 
the sample size to number of item parameters ratio guideline for accurate 
item parameter estimation needs to be adjusted upward if the number of 
response categories in an item is large. That is, as the number of response 
categories per item increases, larger calibration samples are necessary. 

Findings for the particular polytomous IRT models that have been 
studied may not generalize to other polytomous IRT models because the 
number of item parameters and their definitions can vary from model to 
model. As a consequence, the primary objective of the present study was 
to investigate the effect of sample size, the distribution of trait levels, the 
number of response categories, and the distribution of item parameters 
(scale values) on the recovery of known item and person parameters for 
the rating scale model (Andrich, 1978a, 1978b) using the PARSCALE 
computer program (Muraki and Bock, 1993). The goal of the present 
study was to determine if the general guidelines that have been recom­
mended for the partial credit model, the nominal response model, or the 
graded response model generalize to Andrich's rating scale model. 
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Andrich's Rating Scale Model 

The primary purpose for the development of the rating scale model 
was to give researchers a way to analyze attitudinal response data using 
item response theory. Andrich (1978a, 1978b) extended the Rasch model 
for dichotomously scored items to the case where there are more than two 
response options available for each item. 

In the rating scale model, a single scale value for each item is esti­
mated on the same metric as the trait parameter. Simultaneously, a set of 
response thresholds is estimated for the entire scale. The number of thresh­
olds estimated for the scale is one less than the number of response cat­
egories. Andrich defined the probability of responding in a given category, 
x (x = 0, 1, ... ,m), on item i as 

where Px is the probability of responding in a particular response cat­
egory, x, on item i, e is the trait level for a given individual, b. is the scale 

I 

value of item i, and t. 
} 

is the threshold value for the response category in 
question. As can be noted by its absence from the formula, item discrimi­
nation is assumed to be constant across items. Figure 1 depicts the operat­
ing characteristic function for a rating scale item with four response options. 
The scale value for this item is 0 and the threshold values for the scale are 
-0.8, 0, and 0.8. 

Method 

Overview of the Design 

Monte Carlo data were generated to study the ability of the 
PARSCALE program to recover item and trait parameters according to 
Andrich's rating scale model under several conditions. All conditions used 
a common test length of 30 items. There were 40 simulated data matrices 
corresponding to a fully crossed design of the following variables: (a) the 
distribution of the true scale values-skewed and uniform; (b) the number 
of response categories per item-4 and 5; (c) the distribution of known 
trait levels-normal and skewed; and (d) the sample size-60, 125, 250, 
500, and 1000. Each cell in the fully crossed design was replicated 10 



180 FRENCH AND DODD 

1.00 

0.90 

0.80 P(x=o) 

0.70 

0.60 

CD 
>c 0.50 
Ii:' 

0.40 

0.30 

0.20 

0.10 

0.00 
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

Trait Level (9) 

Figure 1. Operating characteristic function for a four response category rating 
scale item. 

times using different seed values to generate new subjects; thus, there 
were a total of 400 (1040) matrices examined in this study. 

Item Pools 

Four item pools were constructed by completely crossing the two 
levels of the distribution of the scale values with the two levels of the 
number of response categories per item. Each item pool consisted of 30 
items. The uniform and skewed distributions of scale value parameters 
are presented in Table 1. The uniform distribution was created by spac­
ing the scale values evenly across the range of -2.0 to 2.0. The skewed 
distribution of scale values was created to have a mean of -0.8, standard 
deviation of 0.75, and a skewness index of 0.6. 

Table 2 contains the threshold parameters, which were selected to 
be representative of the threshold values that have been obtained for real 
data sets (Dodd, 1990). 

Simulated Data Generation 

Known thetas for the simulees in the normal distribution of trait 
level condition were generated by randomly selecting z scores from a unit 
normal distribution. For a particular simulee, the probability of respond­
ing in each response category was calculated and compared to a random 
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Table 1 

True Scale Values for the Various Distribution Conditions 

Distribution 

Item Number Uniform Skewed 

-2.000 -l.985 
2 -1.862 -l.802 
3 -1.724 -1.769 
4 -1.586 -1.652 
5 -1.448 -1.541 
6 -1.310 -1.531 
7 -1.172 -1.487 
8 -1.034 -1.415 
9 -0.897 -1.408 

10 -0.759 -1.313 
11 -0.621 -1.266 
12 -0.483 -1.215 
13 -0.345 -1.039 
14 -0.207 -1.007 
15 -0.069 -0.998 
16 0.069 -0.939 
17 0.207 -0.873 
18 0.345 -0.816 
19 0.483 -0.713 
20 0.621 -0.687 
21 0.759 -0.670 
22 0.897 -0.364 
23 1.034 -0.305 
24 1.172 -0.226 
25 1.310 -0.102 
26 1.448 -0.075 
27 1.586 0.050 
28 1.724 0.389 
29 1.862 0.744 
30 2.000 0.829 

Table 2 

True Scale Threshold Values for the Various Response Category Conditions 

Number of Categories 

4 -1.20 0.00 1.20 
5 -1.50 -0.75 0.75 1.50 
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number drawn from a uniform distribution ranging from 0 to 1. The ran­
dom number was successively compared to the cumulative probability 
values from the lowest response category to the highest response category. 
For each response category where the random number was greater than 
the cumulative probability value, the simulee received 1 point for the re­
sponse category. When the random number was equal to or less than the 
cumulati ve probability, the simulee was assigned 0 points for the response 
category. The simulee's score for the item was simply the sum of the 
response category scores for the item. 

While it may seem more intuitive to simply calculate cumulative 
probabilities for each response category and find the response category 
within which the random number response falls to obtain the item score, 
the summation of response category scores provides the same answer. For 
each item, a simulee could receive a score ranging from zero points for 
failing to exceed the cumulative probability value associated with the first 
response category to four points for exceeding the cumulative probability 
value associated with the next to last response category of the five-option 
scale. The same process was applied to generate the responses to the four­
option scale using the same known thetas, with the maximum possible 
item score being three. The process was conducted for each simulee to 
create the response strings that were used as the input to the PARSCALE 
program. 

The procedures used to generate the known thetas for the skewed dis­
tribution of trait level condition were identical to the procedures used for 
the normal distribution of trait level condition except that a skewed distri­
bution was used instead of the unit normal distribution. More specifically, 
the known trait levels were drawn from a skewed distribution with a mean 
of -0.8, standard deviation of 0.75, and a skewness index of 0.6. These 
parameters were selected so that the skewed trait level distribution would 
match the skewed distribution condition for the scale values. 

Parameter Estimation 

Item and person parameters were estimated according to Andrich's 
rating scale model with the PARSCALE (Muraki and Bock, 1993) com­
puter program. PARSCALE employs the marginal maximum likelihood 
estimation procedure described by Bock and Aitkin (1981) to estimate 
item parameters. The person parameters can be estimated with either the 
maximum likelihood or expected aposterior estimation procedures. For 
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this study the maximum likelihood procedure was chosen to estimate the 
trait levels of the simulees. To deal with the indeterminacy of the trait and 
item parameter scale, PARSCALE sets the ability scale to be normal with 
a mean of zero and a standard deviation of one. 

Analysis 

As criteria for judging the recovery of the parameters, three com­
mon indices were selected. The root mean square error (RMSE) index, 
the Bias index, and the Pearson correlation coefficient were calculated 
between the known parameters and the recovered parameters and aver­
aged across replications. 

RMSE was calculated for the theta estimates using the formula 

i(ej-ejf 
RMSE(ej)= /-,j--,-=I___ 

n 

where 8 
} 

represents true trait, e. 
} 

represents estimated ability, and n rep­
resents the number of simulees in the condition. For the item parameters 
(scale values and thresholds) the 8 j s were replaced, respectively, with biS 

and tiks for the true values, and hiS and tikS for the estimated values. 

For the Bias calculations the following formula was used: 

Bias(8.) = (El j -8j ) 


J n 


where the symbols represent the same quantities as in the RMSE formula. 
In keeping with the results reported by Reise and Yu (1990), also computed 
were the averages across the main factors that were manipulated in the 
current study for each distribution of trait level condition, respectively. 

Results 

Recovery indices are reported for the theta levels, the scale values, 
and the threshold parameters. As indicated by Reise and Yu (1990), there 
are no standards by which to measure the power of the parameter recov­
ery efforts within the polytomous item response models. Reise and Yu 
used the recovery indices from a two-parameter logistic study (Hulin et 
aI., 1982) and one that used marginal-maximum likelihood (Yen, 1987). 
For this study, the values obtained by Choi et aI. (1997) were used for 
comparison. 
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Trait level (e) 

Normal datasets. Table 3 contains the RMSE, correlation, and Bias 
indices averaged across replications for the trait level parameters in the 
normal distribution of trait level condition. The RMSE results are de­
picted graphically in Figure 2, while the correlation coefficients that were 
obtained are presented in Figure 3. Table 4 contains the RMSE, correla­
tion coefficients, and Bias indices averaged for each main effect of the 
manipulated variables. 

As pointed out in Reise and Yu (1990) and Choi et aI. (1997), sample 
size doesn't appear to impact the recovery of theta parameters. Holding 
the other factors constant, there is little difference between the RMSEs at 
any levels of sample size, nor is there any apparent trend in these minor 
differences. Differences between the skewed and uniform distribution of 
the scale value conditions also appear to be negligible (the average differ-

Table 3 

RMSE, Bias, and Correlation Indices for Trait Parameter Recovery Averaged 
Across Replications for the Normal Distribution ofKnown Trait Level Condition 
Distribution Number of Number of RMSE Correlation Bias 


of Items Categories Simulees 


Skewed 4 60 0.2585 0.9663 -1.83E-06 
125 02552 0.9673 8.00E-07 
250 0.2687 0.9639 -1.48E-06 
500 0.2599 0.9662 9.40E-07 

1000 0.2686 0.9639 1.67E-06 

5 60 0.2204 0.9755 5.00E-07 
125 0.2215 0.9754 -1.12E-06 
250 0.2289 0.9738 -4.00E-08 
500 0.2341 0.9726 -4.00E-07 

1000 0.2318 0.9731 -5.50E-07 

Uniform 4 60 0.2431 0.9702 2.17E-06 
125 0.2536 0.9678 8.00E-08 
250 0.2556 0.9672 -1.60E-06 
500 0.2552 0.9674 1.06E-06 

1000 0.2569 0.9670 -7.00E-07 

5 60 U.2228 O.~750 -l.OOE-OG 
125 0.21 (jj U.9766 -U)4E-06 
250 0.2283 0.9739 2. 16E-()(j 
500 0.2274 0.9741 1.40E-06 

1000 0.2274 0.9741 -1.I5E-06 
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Figure 2. RMSEs for the trait parameter estimates averaged across replications 
for the normal distribution of known trait level condition. 
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Table 4 

Main Factor Indices for Trait Recovery for the Normal Distribution Known 
Trait Level Condition 

RMSE Correlation Bias 

Skewed 0.2448 0.9698 9.33E-07 
Uniform 0.2386 0.9713 1.24E-06 

Four Categories 0.2575 0.9667 1.23E-06 
Five Categories 0.2259 0.9744 9.36E-07 

Sample Size: 60 0.2362 0.9717 1.38E-06 
125 0.2366 0.9718 7.60E-07 
250 0.2453 0.9697 1.32E-06 
500 0.2441 0.9701 9.50E-07 

1000 0.2462 0.9695 1.02E-06 

Table 5 

RMSE, Bias, and Correlation Indices for Trait Parameter Recovery Averaged 
Across Ree.lications for the Skewed Distribution otKnown Trait Level Condition 
Distribution Number of Number of RMSE Correlation Bias 


of Items Categories Simulees 


Skewed 4 60 0.2173 0.9630 -3.04E-05 
125 0.2146 0.9488 -8.52E-06 
250 0.2297 0.9538 1.34E-05 
500 0.2305 0.9542 1.99E-06 

1000 0.2295 0.9548 4.55E-06 

5 60 0.2051 0.9670 -2.78E-05 
125 0.2064 0.9625 -6.99E-06 
250 0.2078 0.9622 1.39E-05 
500 0.2080 0.9627 1.23E-06 

1000 0.2047 0.9641 5.57E-06 

Uniform 4 60 0.2591 0.9475 -2.84E-05 
125 0.2515 0.9445 -8.47E-06 
250 0.2503 0.9451 1.2IE-05 
500 0.2474 0.9472 -2.l1E-08 

1000 0.2536 0.9448 5.94E-06 

5 60 0.2043 0.9676 -2.91E-05 
125 0.2272 0.9546 -7.94E-06 
250 0.2225 0.9566 1.47E-05 
500 0.2240 0.9568 2.43E-06 

1000 0.2259 0.9562 6.00E-06 
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ence in RMSEs is .0062). The number of response categories variable 
does show differences that indicate that five response categories are bet­
ter than four response categories for theta parameter estimation. The av­
erage difference between the four and five response category RMSEs was 
.03490 for the skewed scale value conditions and .0285 for the uniform 
scale value conditions. Results of the correlation analysis support the con­
clusions drawn from the analysis of the RMSE data. For all practical pur­
poses, the Bias index was functionally zero for all experimental conditions. 

Skewed datasets. Table 5 presents the RMSE, correlation, and Bias 
indices averaged across replications for the trait level parameters in the 
skewed distribution of trait level condition. Figure 4 shows the RMSE 
results graphically, while Figure 5 displays the correlation coefficients. 
The average RMSE, correlation coefficients, and Bias indices for each of 
the main effects are presented in Table 6. 

As was the case with the normal datasets, theta estimation was not 
greatly influenced by sample size. The difference between the average 
RMSEs for the skewed and uniform distributions of scale values was quite 
small (.0185). The theta parameters were estimated better in the five 
response category conditions than the four response category conditions. 
The average difference between the RMSEs for the four and five category 
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Figure 4. RMSEs for the trait parameter estimates averaged across replications 
for the skewed distribution of known trait level condition. 
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Figure 5. Correlation between estimated and true trait parameters averaged across 
replications for the skewed distribution of known trait level condition. 

Table 6 

Main Factor Indices for Trait Recovery for the Skewed Distribution of Known 
Trait Level Condition 

RMSE Correlation Bias 

Skewed 0.2181 0.9597 -3.31E-06 
Uniform 0.2366 0.9527 2.40E-06 

Four Categories 0.2410 0.9507 -3.78E-06 

Five Categories 0.2136 0.9613 -2.80E-06 


Sample Size: 60 0.2214 0.9620 -2.89E-05 
125 0.2317 0.9531 -7.98E-06 
250 0.2276 0.9548 1.35E-05 
500 0.2275 0.9556 1.41E-06 

1000 0.2284 0.9555 5.52E-06 

conditions was .0179 for the skewed distribution of scale values and .0316 
for the uniform distribution of scale values. Unlike the finding for the 
normal datasets, the average RMSE was slightly smaller for the skewed 
distribution of scale values condition than the uniform distribution of scale 
values condition. In general, the correlation coefficients mirrored the 
RMSE results. As was the case with the normal datasets, the Bias index 
was essentially zero for all conditions. 
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Item Parameters: Scale Value (b) 

Normal datasets. Table 7 contains the RMSE, correlation, and Bias 
indices averaged across replications for the scale value parameters in the 
normal distribution of trait level condtions. Table 8 shows the same re­
sults collapsed across the main effects of the variables manipulated in the 
study for the normal datasets. Results of the RMSE analysis indicate that 
sample size was the most important factor affecting scale value recovery. 
Across all conditions, RMSEs ranged from .2074 (uniform, 4 response 
categories, N=60) to .0388 (skewed, 5 response categories, N=1000). In 
general, the skewed item pool showed better recovery at sample sizes of 
60 and 125, while results for larger sample sizes show no evidence that 
either item pool distribution provides an advantage over the other. 

In terms of the number of response categories, RMSEs in all cases 
of the five response category conditions provided better recovery than 

Table 7 

RMSE, Bias, and Correlation Indices for Scale Value Recovery Averaged Across 
Rep./ications fpr the Normal Distribution otKnown Trait Level Condition 

Distribution Number of Number of RMSE Correlation Bias 
of Items Categories Simulees 

Skewed 4 60 0.1805 0.9723 -0.0021 
125 0.1267 0.9870 0.0062 
250 0.0905 0.9930 0.0126 
500 0.0613 0.9969 0.0057 

1000 0.0450 0.9983 0.0102 

5 60 0.1698 0.9798 -0.0322 
125 0.1040 0.9912 0.0004 
250 0.0793 0.9947 0.0083 
500 0.0555 0.9976 -0.0009 

1000 0.0388 0.9988 0.0080 

Uniform 4 60 0.2074 0.9868 -0.0043 
125 0.1355 0.9945 0.0108 
250 0.0900 0.9973 -0.0057 
500 0.0652 0.9986 -0.0043 

1000 0.0487 0.9992 0.0055 

5 60 0.1634 0.9918 0.0183 
125 0.1132 0.9959 0.0054 
250 0.0770 0.9982 -0.0035 
500 0.0546 0.9991 0.0050 

1000 0.0409 0.9995 -0.0029 
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Table 8 

Main Factor Indices for Scale Value Recovery for the Normal Distribution of 
Known Trait Level Condition 

RMSE Correlation Bias 

Skewed 0.0951 0.9910 0.0016 
Uniform 0.0996 0.9961 0.0024 

Four Categories 0.1051 0.9924 0.0035 

Five Categories 0.0896 0.9947 0.0006 


Sample Size: 60 0.1803 0.9827 -0.0051 
125 0.1198 0.9922 0.0057 
250 0.0842 0.9958 0.0029 
500 0.0592 0.9980 0.0014 

1000 0.0434 0.9990 0.0052 

their four response category analogs. The largest differences in recovery 
between the four and five response category conditions occur at sample 
sizes of 60, while the smallest occur at sample sizes of 1000. Figure 6 
presents the RMSE results graphically. 

Figure 7 contains the results for the average correlation coefficients 
and shows a trend. As was found for the RMSE index, the magnitude of 
the average correlation coefficients was a function of sample size and the 
number of response categories. Unlike in the findings for the RMSEs, the 
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Figure 6. RMSEs for the scale value parameter estimates averaged across 
replications for the normal distribution of known trait level condition. 
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Figure 7. Correlation between estimated and true scale value parameters averaged 
across replications for the normal distribution of known trait level condition. 

average correlation coefficients point to a superiority of the uniform item 
pool. Correlation coefficients ranged from a low of .9723 (skewed, 4 re­
sponse categories, N=60) to a high of .9995 (uniform, 5 response catego­
ries, N=lOOO). The Bias index ranged from -.0322 to .0126. No clear 
trend emerged from analysis of the Bias indices. 

Skewed datasets. The RMSE, correlation, and Bias indices aver­
aged across replications for the scale value parameters in the skewed dis­
tribution of trait level condition are presented in Table 9. The same results 
collapsed according to the main effects of the experimental conditions 
are presented in Table 10. As was found for the normal datasets, sample 
size had a greater impact on the scale value parameter recovery than did 
the distribution of the scale values or the number of response categories. 
The RMSEs ranged from .0347 (skewed, 5 response categories, N = 1,000) 
to .1909 (uniform, 4 response categories, N = 60). The RMSEs were 
smaller for the five response category conditions than the corresponding 
four response category conditions. The smallest differences occurred for 
sample sizes of 1,000, while the largest differences were found for sample 
sizes of 60. These results are depicted graphically in Figure 8. 

The results obtained for the correlation coefficients are presented in 
Figure 9. Sample size and number of response categories influenced the 
magnitude of the correlation coefficients. 
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Table 9 

RMSE, Bias, and Correlation Indices for Scale Value Recovery Averaged Across 
Reelications [or the Skewed Distribution o[ Known Trait Level Condition 

Distribution Number of Number of RMSE Correlation Bias 
of Items Categories Simulees 

Skewed 4 60 0.1556 0.9780 2.48E-05 
125 0.1110 0.9888 2.70E-05 
250 0.0812 0.9940 2.74E-05 
500 0.0592 0.9968 4.34E-05 

1000 0.0390 0.9986 2. 73E-05 

5 60 0.1417 0.9817 1.46E-05 
125 0.1027 0.9903 3.21E-05 
250 0.0639 0.9963 3.02E-05 
500 0.0479 0.9979 3.68E-05 

1000 0.0347 0.9989 2.ooE-05 

Uniform 4 60 0.1909 0.9874 -1.52E-05 
125 0.1329 0.9939 1.63E-05 
250 0.0940 0.9970 9.93E-06 
500 0.0635 0.9986 3.02E-06 

1000 0.0504 0.9991 3.53E-06 

5 60 0.1692 0.9901 -5.43E-06 
125 0.1079 0.9960 -3.09E-06 
250 0.0808 0.9978 -3.85E-06 
500 0.0537 0.9990 -1.73E-05 

1000 0.0401 0.9994 1.22E-05 

Table 10 

Main Factor Indicesfor Scale Value Recovery for the Skewed Distribution of 
Known Trait Level condition 

RMSE Correlation Bias 

Skewed 0.0837 0.9950 2.84E-05 
Uniform 0.0983 0.9974 1.10E-08 

Four Categories 0.0978 0.9957 1.67E-05 
Five Categories 0.0843 0.9969 1.16E-05 

Sample Size: 60 0.1644 0.9850 4.69E-06 
125 0.1136 0.9928 1.8lE-05 
250 0.0800 0.9965 1.59E-05 
500 0.0561 0.9982 1.65E-05 

1000 0.0410 0.9990 1.58E-05 
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Figure 8. RMSEs for the scale value parameter estimates averaged across 
replications for the skewed distribution of known trait level condition. 
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Figure 9. Correlation between estimated and true scale value parameters averaged 
across replications for the skewed distribution of known trait level condition. 
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Item Parameters: Thresholds (t) 

Normal Datasets. Tables 11 and 12 contain the results from the analy­
ses of the threshold recovery in the normal distribution of known trait 
level condition. The only index calculated for the thresholds was RMSE 
because each threshold was treated separately, and therefore only ten es­
timates existed per condition. Table 11 contains the RMSE average across 
the ten replications for each experimental condition. Table 12 contains 
the main effects for each of the manipulated variables. Results show that 
as sample size increases from 60 to 1000, the estimation of all thresholds 
generally improves: from a high of .1426 (skewed,S response categories, 
N=60) to .0070 (uniform,S response categories, N=1000). For the first 
threshold, RMSEs provide no evidence of an item pool distribution effect 
upon recovery. For all sample sizes, the four response category condi-

Table 11 

RMSEs for Threshold Recovery Averaged Across Replications for the Normal 
Distribution o[Trait Level Condition 

Distribution Number of Number of RMSE 

of Items Categories Simulees t} t2 t3 t4 


Skewed 4 60 0.0547 0.0664 0.0749 

125 0.0481 0.0623 0.0959 

250 0.0360 0.0246 0.0475 

500 0.0305 0.0323 0.0237 


1000 0.0134 0.0171 0.0188 

5 60 0.1050 0.0745 0.1426 0.1170 
125 0.0555 0.0206 0.0749 0.1098 
250 0.0509 0.0253 0.0511 0.0721 
500 0.0223 0.0369 0.0232 0.0452 

1000 0.0191 0.0201 0.0179 0.0211 

Uniform 4 60 0.0562 0.0614 0.0812 

125 0.0456 0.0336 0.0547 

250 0.0278 0.0347 0.0436 

500 0.0248 0.0311 0.0241 


1000 0.0216 0.0205 0.0171 

5 60 0.0872 0.0913 0.0773 0.0742 
125 0.0679 0.0757 0.0414 0.0624 
250 0.0560 0.0487 0.0339 0.0662 
500 0.0314 0.0259 0.0262 0.0214 

1000 0.0262 0.0159 0.0209 0.0070 
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Table 12 

Main Factor RMSEs for Threshold Recovery for the Normal Distribution of 
Known Trait Level Condition 

RMSE 
tl t2 t3 t4 

Skewed 0.0436 0.0380 0.0570 0.0730 
Uniform 0.0445 0.0439 0.0420 0.0462 

Four Categories 0.0359 0.0384 0.0482 
Five Categories 0.0522 0.0435 0.0509 0.0596 

Sample Size: 60 0.0758 0.0734 0.0940 0.0956 
125 0.0543 0.0480 0.0667 0.0861 
250 0.0427 0.0333 0.0440 0.0692 
500 0.0272 0.0316 0.0243 0.0333 

1000 0.0201 0.0184 0.0187 0.0140 

tions show lower RMSEs than the five response category conditions. The 
RMSEs for the second threshold also indicate little impact of item pool 
distribution upon threshold parameter recovery. Additionally, the effect 
of the number of response categories is less clear than for the first thresh­
old. RMSEs for the third threshold show only weak effects due to item 
pool distribution and the number of response categories. Finally, the fourth 
threshold results show a superiority of the uniform distribution relative to 
the skewed distribution of scale values. 

Skewed Datasets. Table 13 reports the average RMSE for each 
experimental condition for the skewed known trait levels. Most of the 
RMSE values are quite small. Inspection of Table 14, which presents the 
same results for each main effect of the study that was manipulated for 
the skewed distribution of known trait levels, shows that the type of dis­
tribution of scale values appears to have little impact on the threshold 
parameter recovery. The RMSE is about the same for the uniform and 
skewed distribution of scale values conditions for each threshold param­
eter, respectively. No clear pattern emerges concerning the number of 
response categories or the sample size variables. 

Discussion 

Consistent with the findings of the studies by Reise and Yu (1990) 
and Choi et al. (1997), sample size did not affect the recovery of the trait 
parameters. Similar to the findings of other recovery studies, it was also 
found that the presence of more response categories resulted in slightly 
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Table 13 

RMSEs for Threshold Recovery Averaged Across Replications in the Skewed 
Distribution otKnown Trait Level Condition 

Distribution Number of Number of RMSE 
of Items Categories Simulees tJ t2 t3 t4 

Skewed 4 60 -0.0549 0.0205 0.0344 

125 -0.0395 -0.0178 0.0573 

250 -0.0660 0.0007 0.0652 

500 -0.0544 0.0027 0.0517 


1000 -0.0513 -0.0019 0.0533 

5 60 -0.0918 -0.0225 0.0429 0.0714 
125 -0.0597 0.0032 0.0054 0.0511 
250 -0.0301 -0.0389 0.0077 0.0613 
500 -0.0463 -0.0188 0.0048 0.0603 

1000 -0.0571 -0.0247 0.0145 0.0673 

Uniform 4 60 -0.0665 -0.0395 0.1060 

125 -0.0497 0.0136 0.0360 

250 -0.0838 0.0101 0.0737 

500 -0.0584 0.0018 0.0566 


1000 -0.0521 0.0057 0.0464 

5 60 -0.0847 -0.0318 0.0290 0.0875 
125 -0.0440 -0.0342 -0.0138 0.0921 
250 -0.0346 -0.0325 0.0208 0.0463 
500 -0.0496 -0.0321 0.0192 0.0625 

1000 -0.0475 -0.0227 0.0124 0.0577 

more accurate theta estimation than in the case of items with fewer re­
sponse categories. The difference found in the current study was so small, 
however, that it is doubtful that there is a practical importance. It is quite 
possible that the number of response categories could have made a larger 
difference if more levels of the variable had been studied. Given the lev­
els of variables investigated in the current study, however, it can be con­
cluded that PARSCALE provided good trait estimation. 

The PARSCALE program also provided good estimation of the scale 
values across most conditions researched. The highest RMSE under any 
condition for scale value recovery was 0.2074 and the lowest correlation 
was 0.9723. Each of these values in an absolute sense is competitive with 
the RMSE and correlation values reported in previous studies. However, 
as pointed out by some of those previous studies, rather than look strictly 
at the values of the recovery indices, one should look at sample size-to­
parameter ratios. Even looking at the results of the current study in this 
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Table 14 

Main Factor RMSEsfor Threshold Recovery for the Skewed Distribution of 
Known Trait Level Condition 

RMSE 
t1 t2 t3 L! 

Skewed -0.0551 -0.0098 0.0337 0.0623 
Uniform -0.0571 -0.0162 0.0386 0.0692 

Four Categories -0.0577 -0.0004 0.0581 
Five Categories -0.0545 -0.0255 0.0143 0.0658 

Sample Size: 60 -0.0745 -0.0183 0.0531 0.0795 
125 -0.0482 -0.0088 0.0212 0.0716 
250 -0.0536 -0.0152 0.0419 0.0538 
500 -0.0522 -0.0116 0.0331 0.0614 

1000 -0.0520 -0.0109 0.0137 0.0625 

light, one could conclude that PARSCALE recovered the parameters of 
Andrich's rating scale model very well. As noted above, the worst recov­
ery indices were obtained under four response category conditions with a 
sample size-to-parameter ratio of 1.82: 1. The only conditions with a lower 
sample size-to-parameter ratio 0.76: 1) actually resulted in better recov­
ery indices. This result appears to contradict that found by Choi et al. 
(1997), who concluded that for a fixed number of parameters, an increase 
in the number of response categories per item requires larger sample sizes. 
One explanation for these results could be that the lower ratio, which was 
associated with five response categories, allowed for better estimation of 
the scale values, because the scale value of an item is a location parameter 
for the item and is similar to the b parameter of the dichotomous models. 

The threshold parameters, on the other hand, confirmed the findings 
of Choi et al. (1997) in that the thresholds for the five response category 
conditions were worse than those for the four response category condi­
tions. Thus, the warning by Choi et al. that spreading out a fixed number 
of people over a larger number of response categories reduces the accu­
racy of item parameter estimation appears to apply to the threshold pa­
rameter estimates of the rating scale model but not to the scale value 
parameter estimates. 

De Ayala (in press) recommended a ratio of 5: 1 for accurate estima­
tion with the nominal model. Walker-Bartnick (1990) recommended a 
ratio of 2: 1 for the partial credit model, and Choi et al. (1997) warned that 
sample size-to-parameter ratio considerations are more complex than 
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previously thought and concluded that finding a good "rule of thumb" 
would require more research. 

The results of this study certainly do not conflict with the recom­
mendations of these other researchers, but they do illustrate some of the 
complexity involved in determining how the parameter estimates are af­
fected by various real world constraints. The parameters for Andrich's 
rating scale model were estimated well with considerably smaller number 
of persons-to-item parameters ratios (as small as 1.76: I) than the ratios 
recommended for other item response theory models that have been in­
vestigated. It should be noted that this finding could be due to Andrich's 
rating scale model being a special case of the partial credit model and 
which means there are fewer item parameters to estimate per item. Cer­
tainly, however, more research is necessary before a general rule can be 
applied across item response models. 
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