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Chapter 1

An Overview of the Family
of Rasch
Measurement Models

Benjamin D. Wright
University of Chicago

Magdalena M. C. Mok
The Hong Kong Institute of Education

The family of Rasch measurement models is a way to make sense of the
world.  Experience is continuous.  But the moment we notice experience,
it becomes discrete.  We sense the fragrance of flowers.  The sensation is
continuous.  But when we distinguish between flowers—with and with-
out fragrance; strong from weak fragrance, fragrance we like, don’t mind,
or dislike, then our observations become discrete.  As we notice and re-
member particulars, we begin the counting that can become measurement.
Counting is never accidental.  It is always underpinned by the intention of
replication.  But replication is never exact.  Its approximation depends on
the situation, how much we care and what we are going to do with the
count.  A vacationer may count seashells according to size, shape or color.
But an Aboriginal would count them according to whether or not their
contents were edible.  Any idea that all seashells are sufficiently identical
to be counted is based on a fiction that each shell makes an equal contri-
bution to an intention—which for practical purposes we keep constant.
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2 WRIGHT AND MOK

This is true for all counting.  As soon as we start counting, we have de-
cided on a useful identity, namely that, at least for us, the objects we
count are sufficiently identical to be infinitely exchangeable.

We choose a dimension according to its utility.  Then we define
what is (and what isn’t)—a sign of the more or less of that dimension.
Then we count indicators of the dimension.  To make our counting useful,
we look beyond the raw objects counted to the dimension which we have
decided our counts imply.  We decide, discover and verify the extent to
which counting these particular observations contains inference about the
dimension.  Our raw data take such forms as:

Yes/No
Present/Absent
Right/Wrong

Which we score as observations:  x = 0,1.

There are situations where indications of more or less of a dimen-
sion can be introduced as categories within each observation.  Counting
in this way gives rise to data such as:

Frequently/Sometimes/Rarely for x = 0, 1, 2
Strongly Agree/Agree/Disagree/Strongly Disagree for x = 0, 1, 2, 3

The family of Rasch measurement models provides the means for
constructing interval measures from these kinds of raw data.

All observations begin as counts.  But raw counts are only indica-
tions of a possible measure.  Raw counts cannot be the measures sought
because in their raw state, they have little inferential value.  To develop
metric meaning, the counts must be incorporated into a stochastic process
which constructs inferential stability.  There are many examples in every-
day life where raw counts are not useful for inference.  Suppose we want
to measure how long we can support a heavy pile of books.  We may take
a stop-watch to record the length of time, but the seconds counted do not
“measure” our experience.  The first seconds are easy and pass quickly.
But the final seconds become painfully difficult and “take forever”.  In
this situation, each raw second counted has a different experiential mean-
ing, depending on when it occurs.  As such, the “second” itself is not a
useful unit of measurement for how it feels to support heavy books.

Raw counts may give the impression that they are interval (or ratio)
measures of experience.  But this is always an illusion.  In particular, raw
counts at the beginning and end of a raw score scale are problematic be-
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cause while the counts necessarily terminate at “none” or “all”, the mea-
sures they might imply have no boundaries.  Problems with counting can
also occur at other parts of the scale.  The question, “How many oranges
do we need to squeeze an  8 ounce glass of orange juice?” makes no sense
because the answer depends on the size of the oranges.  We withdraw
from the concrete reality of counting real oranges and advance instead to
approximating an abstract fiction of perfect ounces of weight to construct
a stable answer.  A pint is a pound the world around.  Oranges are half
juice.  Therefore it takes 1 pound of oranges to produce 8 ounces of juice.

Consider observations derived from commonly used survey rating
scales such as “strongly agree”/ “agree”/ “disagree”/ “strongly disagree”.
The assignment of the number labels (numerals) 1, 2, 3, 4 to these options
does not make these numerals become equally distanced measures. But if
the category labels are not equally distanced, then none of the conven-
tional statistics we like to use, including the mean and standard deviation,
provide legitimate processing for these non-interval category labels.

There is also the issue of missing data.  Data may be missing because of
oversight or non-compliance.  It may result from incidental interference, per-
haps from the physical condition of the person.  If the purpose of research is
to use existing information to make inferences about what is still unknown,
then missing data are of the essence.  It follows that a useful measurement
model for constructing inference from observation must be unaffected by
missing data.  Further, for a measurement model to be useful, it must enable
us to estimate the precision of our inference and it must provide for the detec-
tion and evaluation of discrepancy between observation and expectation.

If raw counts cannot be relied upon to serve as measures, how can
we construct inferences from observations?  In order for measurement to
be useful for inference, it needs to be linear and reproducible.

A feel for precision can be achieved through replication.  The ability
to replicate is the first condition for precision.  When similar results occur
repeatedly, we gain confidence that the same will happen in the future.
However, replication does not guarantee the accuracy of a measure.  If we
use a broken typewriter to measure typist speed, then no matter how many
times the test is repeated, we will get the wrong measurement of the typing
speed.  Likewise, a testing instrument has to operate in the region of a
candidate’s proficiency.  This is called ‘targeting’.  A second condition for
precision is noise control.  This includes using a relevant tool to carry out
the observations and making sure that the observations take place under
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reproducible conditions.  A typewriter in good condition should be used for
measuring typing speed and the room should be well-lighted, not too noisy
and neither too cold nor too hot.  Nevertheless, no matter how hard we try to
control the intrusion of noise into the observation process, there are always
factors beyond our control.  The person can become careless or have had an
argument with their family, which may have affected their performance.
Such factors are often unknown to the person collecting the data.  It is
therefore important that the measurement model has indicators not only of
the precision of inference but also the quality.

Measures must be as independent as possible of incidental circum-
stances.  As long as a good typewriter is used, the measure of my typing
speed must not depend on who else before me has been measured on the
typewriter.  And, so far as all typewriters are in good conditions, my speed
should not depend on which one I use.  The measured proficiency of a
candidate cannot depend on who else takes part in the examination or the
difficulty level of the test items.  This requirement for measurement is
called ‘parameter separation’.  This condition is met in the family of Rasch
measurement models.

Thus, in order to construct inference from observation, the measure-
ment model must: (a) produce linear measures, (b) overcome missing data,
(c) give estimates of precision, (d) have devices for detecting misfit, and
(e) the parameters of the object being measured and of the measurement
instrument must be separable.  Only the family of Rasch measurement
models solve these problems.

We will begin our discussion with the simplest case, that of a di-
chotomous outcome.  The method generalizes easily to situations with
finer gradations.  Imagine jumpers jumping fences.  The jumpers vary in
strength from weak to strong, and the fences are of various heights posing
different challenges (Figure 1).

The outcomes among jumpers of varying strengths attempting fences
of different heights can be summarized in a data matrix.  For any jumper n,
(n = 1,...,N) attempting fence i (i = 1,...,L), the outcome is either a success
(denoted by x

ni
=1) or a failure (denoted by x

ni
=0).  The attempts of jumper n

against all fences tried can be represented by a response vector such as
(1,1,-,0,1,...,0) where a ‘1’ represents a successful attempt by jumper n, ‘0’
represents a failed attempt and a ‘-’ records that jumper n was not observed

to attempt that particular fence.  A raw count of successes (
i
∑x

ni
 = R

n
) can be

obtained by summing the elements of a response vector.  But unless all



RASCH MODELS OVERVIEW 5

jumpers have an equally fair-shot at all fences, the raw sum of successes R
n

made by jumper n and R
m
 by jumper m remain incomparable.  Because they

do not share the same fences, there is no way one raw sum can be compared
with another in order to infer that one jumper is better than the other.  Simi-
larly, for any fence i, the attempts made by all jumpers can be represented
by a vector of 1, 0, and –’s, with a total number of successful jumpers equal
to the sum of ‘1’s (

n
∑x

ni
 = S

n
).  Again, unless all fences have been challenged

by all jumpers, the raw sum of successful jumpers over two particular fences
cannot be used to compare the relative difficulties of those two fences.  Fig-
ure 2 shows such a data matrix.

Figure 1.  Jumper stronger than fence clears.  Jumper weaker than fence tumbles.
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Figure 2.  Observation of jumpers over fences.
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While this raw data matrix is all the observation we have, as it stands,
it is of limited utility.  Even though it contains everything we could ob-
serve, as it stands, it doesn’t help us to predict what will happen in the
future.  In order for it to be useful, we must build a useful expectation of
whether jumper n will succeed on fence i the next time round.

To know about the strength of a jumper, we must challenge him with
a fence and to find out about the height of a fence, we must challenge it with
a jumper.  The meaning of the observation is derived conjointly from fence
and jumper, simultaneously.  Nevertheless, we must back away from the
mere manifestation of jumpers negotiating fences because, after all, we are
not interested in the specific incidents of success and failure on this already
passed occasion.  Instead, we want to infer from these data, assertions of the
relative strengths of jumpers and fences, expectations as to what will hap-
pen next.  Our expectations must be grounded on an abstraction of this
conjoint situation.  Counts are concrete and limiting; expectations are ab-
stract and liberating.  The ability to expect and so to infer is the impetus of

Figure 3.  The spiral of inferential development.
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human development, the prime tool of civilization.  The transition from
continuous sensation to discrete counts, and from discrete observations of
current events to continuous inferences about the future underpins the evo-
lution of our ability to survive, let alone build science (Figure 3).

For jumper and fence, the meaning of experience is created by ab-
stracting from observations of ‘0’s, ‘-’s, and ‘1’s into expectations, P

ni
, as

in Figure 4.  In this matrix of expectations there are no missing data.

The basic Rasch model for this kind of analyses can be derived from
the simplest paired comparison.  Consider comparing the strengths of two
jumpers or the heights of two fences (Wright and Linacre, 1995).  Con-
sider jumpers Mike and Nick of strengths B

m
 and B

n
 making a jump at the

same fence i.  Let x
mi

 denote the outcome of Mike’s attempt at fence i and
x

ni
 denote the outcome of Nick’s attempt at fence i.

  
x

mi
 can be either 0, if

Mike fails to jump fence i, or 1, if he succeeds.  x
ni
 is also scored 0 or 1,

depending on whether Nick fails or succeeds with fence i.  If Mike and
Nick each makes one jump at fence i, there are 2 x 2 possible outcomes.
Of these four possibilities, the two outcomes in which either both jump
over the fence or both fail the fence do not contain any information re-
garding the relative strengths of Nick and Mike.  Only the two off-diago-
nal outcomes are informative, because only these outcomes tell us whether
Mike or Nick is a stronger jumper.

To get an idea of who is a stronger jumper, in pursuit of the neces-
sity for replication, Mike and Nick make many attempts at fence i and the
results are recorded in Table 1.

Figure 4.  The stochastic interpretation of observations of jumpers over fences.
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Let P
ni
 be the probability of Nick jumping fence i and (1-P

ni
) be the

probability of Nick failing fence i and the same for Mike with P
mi

 and (1-P
mi

).
The probabilities of the four possible outcomes are given in Table 2.

Let N
10

 be the number of times Mike succeeds but Nick fails and  N
01

be the number of times Mike fails but Nick succeeds.  As Nick and Mike
compete on a number of occasions, it is the ratio of times N

10
/N

01
, rather

than the difference (N
10

–N
01

), by which Mike beats Nick that produces a
stable picture of how much Mike is better than Nick.  To illustrate this
point, four possible off-diagonal outcomes are presented in Table 3.

In Table 3, A, B and C describe situations where Mike is nine times
better than Nick, a condition clearly stable in the ratios but unstable in the
differences.  Situation D, on the other hand, is clearly a case where Mike and
Nick are almost identical in strength, as reflected in the ratio N

10
/N

01
.  Their

difference (N
10

–N
01

) gives a distorted picture because it implies that Mike is
as much stronger than Nick as he was in situation A where the 

 
N

10
/N

01
 ratio

was 9.  These examples demonstrate that the ratio N
10

/N
01

, of the off-diagonal
elements contains the replication stable information about the relative strengths
of Mike and Nick.  Introducing a probability model for this ratio produces:

Table 2
Probability matrix of possible outcomes

 
 

 Nick Wins 
1=nix  

Nick Fails 
0=nix  

Mike Wins 
 

1=mix  niP  miP  miP  )1( niP−  

Mike Fails 0=mix  )1( miP−  niP  )1( miP−  )1( niP−  

Table 1
Outcome when Mike competes with Nick on many attempts at fence i

 
 

 Nick Wins 
1=nix  

Nick Fails 
0=nix  

Mike Wins 
 

1=mix  N11 = the number of times 
both are successful  

(no useful information) 

N10  = the number of 
times Mike beats Nick  

Mike Fails 
 

0=mix  N01 = the number of times 
Nick beats Mike 

N00  = the number of 
times both fail 

(no useful information) 
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which, if Mike and Nick have a meaningful relation, must hold for any
fence i, that is, for all fences.  To be objective and hence useful, the com-
parison between Mike and Nick cannot depend on which fence they com-
pete on.  Expressed mathematically this becomes:
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By the same argument, to maintain objectivity, the relation between
any pair of fences i and j must hold for any arbitrary jumper m.  Any
jumper and any fence can be chosen to define the frame of reference for
these comparisons.  Choosing person 0 and fence 0 to be of equal strength
sets P

00 
at 0.5.  Mathematically, this becomes:
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n

ni

ni

d

b
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P

P
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− , (1)

Table 3
Ratios or Differences?

  Situation 
  A B C  D 
Mike Succeeds 
Nick fails 

10N  9 90 9000  5004 

Mike Fails 
Nick Succeeds 

01N  1 10 1000  4996  

Difference 0110 NN −  8 80 8000  8 

Ratio 0110 NN  9 9 9  ≅1 
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where ( ) nbnf =

and  
idig 1)( = .

Equation (1) specifies that, for measurement objectivity to be ob-
tained, the odds of jumper n succeeding over fence i must be a product of
a function of jumper strength, represented by f(n)=b

n
, and a function of

fence difficulty, represented by

idig 1)( =

and nothing else.  Note that

)1( 0

0

n

n
n P

P
b

−
=

is solely a trait of jumper n and the metric origin, and that

)1(
1

0

0

i

i

i P

P
d −

=

is solely a trait of fence i and the same metric origin.  In this measurement
model, the jumper parameter and the fence parameter are completely sepa-
rated, making it possible to estimate jumper strength independently of fence
difficulty, and to estimate fence difficulty independently of jumper strength.

The odds ratio is defined as the ratio of b
n
, which takes the value

between 0 and infinity, depending only on person n and the stipulated
frame of reference, and d

i
, which takes the value between 0 and infinity,

depending only on item i and the same frame of reference. We have found
a way to estimate which jumper is stronger.  The next question is: “How
much stronger?”  But “How much” is not a ratio question; it is a differ-
ence question.  Taking the logarithms of both sides of equation (1) gives:

  ( ) ( )in
i

i

n

n

ni

ni db
P

P

P

P

P

P
lnln

)1(
ln

)1(
ln

)1(
ln
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0

0 −≡







−
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−

≡







−

 
,

ie, 
             

)1(
ln in
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ni DB
P

P
−≡








−

, (2)

or 
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exp
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−= , (3)
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where ( )n
n

n
n b

P

P
B ln

1
ln

0

0 =







−

=

depends only on attributes of person n and the metric origin,

and     ( )i
i

i
i d

P

P
D ln

1
ln

0

0 =







−

=

depends only on attributes of fence i and the metric origin.

The Rasch model can be equally well derived by applying the same
argument in the case of one jumper negotiating two fences i and j, i.e.,

10

01

(1 )
 

(1 )
ni nj

ni nj

P PN

N P P

× −
≈

− ×
, for all n.

Equations (2) and (3) are equivalent forms of the dichotomous Rasch
model.  B

n
 and D

i
 are commonly referred to as person ability and item

difficulty parameters respectively.  All other forms of the Rasch model
can be derived from this basic form.

The Dichotomous Rasch Model

The simplest Rasch model is for dichotomies (derived in the previ-
ous section):

   
)1(

ln in

ni

ni DB
P

P −≡







− , or equivalently,

( )
( )[ ]   exp1

exp

in

in
ni DB

DB
P

−+
−= .

Here, P
ni
 is the probability of person n with ability B

n
  succeeding on

item i which has difficulty level D
i
.  In the case of one trial, P

ni
 is the expec-

tation (abstraction) of the observed (concretization) x
ni
. The correspondence

between abstraction and concretization is evaluated by the size of the ob-
served discrepancy Y

ni
 = x

ni
 - P

ni
 (Figure 5).  A large discrepancy means that

the concrete experience is not a useful example of the abstraction.  A small
discrepancy implies that the abstraction is robust with respect to the experi-
ence and thus by inference to similar future experiences.  Since each trial is
a Bernoulli experiment, the variance of the x

ni
 is given by P

ni
 (1–P

ni
), so it is

possible to evaluate the significance of a discrepancy by computing an ap-
proximate χ2 with one degree of freedom for each x

ni
:
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2
1

2
2    ~   

)1(
χ

nini

ni
ni PP

y
z

−
= .

The discrepancy between observed, x
ni
, and expected, P

ni
 , with ex-

pected model variance  V
x
 = P

ni
 (1–P

ni
)  enables us to verify, fine-tune,

and validate our measurement constructions.  Each residual, in raw form
y

ni
 = (x

ni
–P

ni
), or in standardized form,

 )1()( ninininini PPPxz −−= ,

shows us a piece of information about the quality of our data and the corre-
sponding validity of our construction.  A positive residual indicates that the
observation is higher than that expected.  A negative residual indicates that the
observation is lower than expected.  Large residuals raise doubts with regard to
the match between data and model.  We can study these standardized residuals
z

ni
 one at a time.  But that can be laborious.  To expedite our evaluations we

organize our study of residuals according to three points of view:

1. We begin with the most unexpected, that is improbable, observa-
tions to see what they suggest as to data quality and construct validity.

2. We square our residuals in raw and standardized form to calcu-
late the outfit and infit mean squares for each person, each item and each

Figure 5.  Verification of relation between interpretation and observation.
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adjacent category threshold estimate.  “Outfit mean square” is shorthand
for “Out-lier sensitive mean square residual goodness of fit statistic” which
is the unweighted version of the fit statistic.  It measures the average
mismatch between data and model.  The item outfit mean square is calcu-
lated by taking the sum of squared residuals averaged over the total num-
ber of persons taking the item (Wright and Masters, 1982: 99).  That is:

Nzu
N

n
nii ∑

=
=

1

2 .

Similarly, the person outfit mean square is given by:

Lzu
L

i
nin ∑

=
=

1

2  .

Mean square statistics are sensitive to extreme values.  Wright and
Masters (1982) caution researchers that outfit mean squares are exagger-
ated by unexpected responses made by persons to items for whom the
items are either far too easy or far too difficult.

An alternative suggested by Wright and Masters (1982) to outfit
mean squares is the infit mean square statistic, which stands for “informa-
tion weighted mean square residual goodness of fit statistic”.  The outfit
mean square statistic is calculated by taking the weighted average of
squared residuals so that remote responses are given less weight than proxi-
mal responses.  Mathematically, this is

 ∑ ∑ ∑∑
= = ==

==
N

n

N

n

N

n
ninini

N

n
ninii WyWWzv

1 1 1

2

1

2   ,

where weight W
ni
 is the variance W

ni
 = P

ni
(1–P

ni
).

3. We decompose the whole matrix of residuals into its principal com-
ponents among items and among persons.  This brings out whatever pat-
terns of misfit lurk among the leftovers from our measurement construct.

Linacre (1998) highlighted several options of factor analysis for iden-
tifying multidimensionality. They are factor analysis of the observations
and factor analysis of the residuals, namely, (a) the raw Rasch residuals,
(b) the standardized Rasch residuals, and (c) the logit residuals.  The math-
ematical expressions of these three residuals are presented in Table 1.  On
the basis of a series of simulation studies involving both orthogonal and
correlated dimensions, Linacre (1998) concludes that although factor analy-
sis of the original observations is informative of the factor structure, this
method does not construct the measures of the factors.  Further, principal
components factor analysis of the standardized Rasch residuals is most
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effective amongst the three residual factor analyses in identifying multi-
dimensionality of the measurement instrument. It is followed by factor
analysis of the raw Rasch residuals, which is only slightly inferior in ef-
fectiveness.  Factor analysis of the logit residuals is the least effective in
identifying multidimensionality (Linacre, 1998).

Typically these principal components identify structural differences
between positive versus negative questions, feeling versus thought versus
behavior questions and so on.

A stable inference is obtained when experience points repeatedly in
a same direction with a same meaning.  When jumper ability is stronger
than fence height, we expect the jumper to make the jump most of the
time.  There will always be some occasions, however, when a jumper fails
a jump, particularly as (B

n
–D

i
) comes close to zero.  On the other hand,

when jumper ability is weaker than fence height, we expect the jumper to
fail the jump most of the time, with odd occasions when he is successful,
perhaps by luck.  When jumper ability is equal to fence height, however,
we expect the jumper to fail the jump about half the time. Thus:

5.0 ifonly  and if  0)( >>− niin PDB ,

5.0 ifonly  and if  0)( ==− niin PDB ,

5.0 ifonly  and if  0)( <<− niin PDB .

This function is represented graphically in Figure 6 and mathemati-
cally by the Rasch measurement model:









−

=−
)1(

ln)(
ni

ni
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Figure 6.  The response curve.
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( )
( )[ ]   exp1

exp

in

in
ni DB

DB
P

−+
−= .

Rasch Model Overview

There are many Rasch models.  We will discuss six of them here.  Their
relationships are shown in the flow diagram in Figure 7 on the next page.

Binomial Trials

Binomial trials (Wright and Masters, 1982: 51) are situations where
several independent attempts are made at an item and the number of suc-
cesses is counted.  In shooting contests, instead of determining the ability
of a shooter from one trial, the shooter is allowed to take several, say m,
attempts at a target and the total number of hits, say x, within m attempts
is counted.  The probability of a shooter with ability B

n
 aiming at a target

with difficulty level D
i
 and getting x hits in m attempts is:

xm
ni

x
ni

m
xnix PPC −−= )1( π ,

where

)!(!

!

xmx

m
C m

x −
= .

Substituting

( )
( )[ ]  exp1

exp

in

in
ni DB

DB
P

−+
−=

from equation (3) and simplifying gives:

[ ]
( )

exp ( )
 

1 exp

n im
nix x m

n i

x B D
C

B D
π

 − =
  + −  

.

Similarly, the probability of the shooter getting (x–1) hits in m attempts is:

[ ]
( ) ( 1) 1

exp ( 1) ( )
 

1 exp
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ni x x m

n i

x B D
C

B D
π − −

 − − =
  + −  

.

Combining these expressions produces the ratio of probabilities of
shooter n aiming at target i and making x hits instead of (x–1) hits in m
attempts, that is, the odds for x rather than (x–1):
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Figure 7.  Six commonly encountered Rasch models.
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Poisson counts

If the number of trials in the binomial model is infinite and the prob-
ability of success is small, as in the case of counting the number of custom-
ers buying a certain product at the supermarket in some given time period,
such that the buying behavior of a particular customer is independent of
that of previous customers, and (mP

nix
) remains approximately constant,

then a binomial distribution approaches a Poisson distribution (Wright and
Masters, 1982: 52-54).

xm
ni

x
ni

m
xnix PPC −−= )1( π   approaches

( )exp  ( )
, where exp( ,

!

x
ni ni

ni n iB - D )  
x

λ λ
λ

−
=

ie,    [ ]
[ ]  )exp(exp !

)( exp

in

in
nix DBx

DBx

−
−

=π ,

and 
  

[ ]
[ ]  )exp(exp )!1(

)( )1(exp
)1( 

in

in
xni DBx

DBx

−−
−−

=−π ,

so that 
   

x

DB in

xni

xni )exp(

)1( 

 −
=

−π
π

 
,

or,  
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π
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.

Rating Scale Model

The previous models are useful for binary outcomes.  However, there
are often situations where outcomes can be given finer gradations than
just “present/absent”, “yes/no” or “right/wrong”.  Response categories in
Likert questionnaires may include ordered ratings such as “Strongly Dis-
agree/ Disagree/ Agree/ Strongly Agree”, to represent a respondent’s in-
creasing inclination towards the concept questioned.  The response rating
scale, when it works, yields ordinal data which need to be transformed to
an interval scale to be useful. This is achieved by the Rasch rating scale
model (Andrich, 1978).  The literature (e.g. Wright and Masters, 1982;
Andrich, 1988) discusses many useful applications of the rating scale
model, including the study of testlets made up of sets of dichotomously
scored items and the analysis of partial credit test items.  A testlet is a
section of a test comprising a stimulus, such as a reading passage or dia-
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gram, with several items referring to the stimulus. An example of stimu-
lus and the associated items is given in Figure 8.

It is reasonable to expect responses to the items within a testlet to
correlate higher with one another than with items on other testlets. As a
consequence, although it is possible to score each item as either right or
wrong, to take into account their testlet clustering, a score can be given to
the testlet instead of to the individual items.  In the above example (Fig-
ure 8), possible testlet scores are 0, 1 and 2 indicating respectively: both
items wrong, either item correct, and both items correct.  A score of 1
does not distinguish which item in the testlet is right.

A typical item characteristic curve is in Figure 9.  Score x=2 repre-
sents a higher level of ability than score x=1, which in turn stands for
more than x=0.  If the ability level is between x=1 and x=2, that rules out
the possibility that the ability level is x=0.  Likewise, if the ability level is
between x=0 and x=1, that rules out the possibility that the ability level is
x=2.  As a consequence, response interpretation is always between adja-
cent categories.

Similarly, in the case of a Likert item, such as, “What do you think

Stimulus material:

“It was Mother’s Day and every street-kid was given a free phone card so that
they could call home.  John picked up the handset but he hesitated.  What if his
mother had not forgiven him?  It was three years since he spoke to her, although
there had not been a single night he went to sleep without thinking about her.  He
learned from occasional chats with his brother that she did miss him and hoped
that they were friends again.”

Questions to be answered using the above stimulus material.

1.  Each street-kid was given a phone card

so that they could contact their friends.

so that they could talk with their family.

so that they learned to use the phone.

2.  Why did John hesitated in ringing?

John hesitated because

his mother missed him.

he had not talked with his mother for a long time.

his mother might not have forgiven him.
Figure 8.  Examples of a testlet which involves a stimulus material and two test
items.
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of the amount of homework this term?” and the response categories are:
“Too Much/ Just Right/ Too Little”.  If we choose between “Too Much”
and “Just Right”, then we have already decided that the amount of home-
work given is not “Too Little”, but if we choose between “Just Right” and
“Too Little”, then we have already decided that it is not “Too Much”.
Thus, no matter how many categories are included in a response scale, the
response decision and interpretation is always between adjacent catego-
ries.  The point at which the probability of opting for the next category is
equal to that for the previous one is called a threshold.  There are two
thresholds, represented by F

1
 and F

2
, in the examples, involving possible

scores of 0 (“Too Much” or “Both item wrong”), 1 (“Just Right” or “Only
one item correct”) or 2 (“Too Little” or “Both item correct”) as shown in
Figure 10.  If we don’t like homework, then our inclination is below the

first threshold F
1
, and we choose category “Too Much”.  But, if we enjoy

doing homework, but are not crazy about it, our inclination would pass
threshold F

1
, but would not pass F

2
,
 
so we would choose “Just Right” over

“Too Much”.  On the other hand, if we are good students who love home-
work, we would choose “Too Little”. The situation is like having two
dichotomous items operating simultaneously.

At the boundary of each threshold, there is a possibility of scoring
either ‘0’ or ‘1’, depending on whether the threshold is “failed” or “passed”.

Low Person Abililty (logit) High

P
ro

ba
bi

lit
y

Figure 9.  Item characteristic curve for the 0, 1 and 2 responses in a three-category item.
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This implies that there should be 2 x 2 = 4 possible outcomes in combina-
tion.  But Figure 10 depicts only 3 of these 4 possible outcomes, namely,
(failed, failed), (passed, failed) and (passed, passed).  The outcome not
included in Figure 10 is (failed, passed), which would mean that the re-
spondent hates homework but thinks that the amount of homework is “Too
Little”—an obviously illegitimate situation in real life and one that would
work against the concept of an underlying continuum.

The probability of passing or failing each threshold can be described
by a Rasch model.  If there are only two categories, denoted by ‘0’ and ‘1’
respectively (Figure 10), then the probabilities of choosing category each
of ‘1’ and ‘0’ are:

Where C
2
 is the sum of the two numerators.

In the case of three categories, denoted by ‘0’, ‘1’ and ‘2’, the prob-
abilities of choosing the categories are:

    )( DB −  

 

0 1  
2

0
1

CP =  

   
2

1
)exp(
C

DBP −=  

         )exp(12 DBC −+=  

F1 F2

Too Much
Score on F1 = 0
Score on F2 = 0
Total score x = 0

(Failed both Thresholds F1

and F2)

Too Little
Score on F1 = 1
Score on F2 = 1
Total score x = 2

(Passed both Thresholds F1

and F2)

Just Right
Score on F1 = 1
Score on F2 = 0
Total score x = 1

(Passed Threshold F1 but
failed Threshold F2)

Love of homework

Figure 10.  Interpretation of thresholds in a three-category item.
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Where C
3
 is the sum of the three numerators.

Similarly, in the case of four categories, denoted by ‘0’, ‘1’, ‘2’ and
‘3’, the probabilities of choosing the categories are:

Where C
4
 is the sum of the four possible numerators.

For this final case, the log-odds of choosing a category over the
previous adjacent one is given by the following computation:
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In general, the odds of choosing a category ‘j’ over the previous
category ‘j–1’ is given by:

and the corresponding log-odds is:

ln(P
j 
/P

j-1
) = (B-D

j
), the basic Rasch model.

The general Rasch rating scale model is given by:

( 1)
ln

nix
n i x

ni x

P
B D F

P −

  = − − 
 

.

If there are several Likert items sharing the same response catego-
ries, it is reasonable to specify that the thresholds for all are the same and
the rating scale model described above can be applied to the group of
items.  On the other hand, if the thresholds are not the same across all
items, then a partial credit model, which will be discussed in the next
section, is applicable.

Partial Credit Model

The partial credit model is similar to the rating scales model except
that now each item has its own threshold parameters (Wright and Mas-
ters, 1982).  This is achieved by a reparameterization:

ixx FF = ,

and the partial credit model becomes:

ixin
xni

nix FDB
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P −−≡








−1 

ln .

The examples of partial credit model discussed in the literature
(Wright and Masters, 1982) are achievement items where: (a) credits are
given for partially correct answers, (b) there is a hierarchy of cognitive
demand on respondents in each item, (c) each item requires a sequence of
tasks to be completed or (d) there is a batch of ordered response items
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with individual thresholds for each item.  Such examples occur frequently
in grading situations.  For instance, a writing assignment is scored as fol-
lows:

3 points for work of a superior quality.
2 points for work of predominantly good quality.
1 point for work that is satisfactory.
0 point for work that is of poor quality.

It is clear from the marking scheme that a score of 3 represents more
writing proficiency than that represented by a score of 2, which in turn
represents higher proficiency than a score of 1, and so on.

Ranks Model

A Ranks Rasch model is useful when respondents are asked to rank
order a group of objects instead of giving a rating to each object.  Ex-
amples include a judge ordering pianists from the strongest to the weak-
est, or a worker sequencing jobs from most to least urgent.  Before 1998,
the Higher School Certificate Examination result in New South Wales
Australia was reported in the form of a number which indicated the
candidate’s position in the list formed by the ordering from most to least
able of all candidates who sat the same examination that year.

Rank order is a familiar concept.  Most people have preference hier-
archies for car models, living styles and personal values.  Linacre (1994)
highlighted the utility of ranks as a way to avoid the problem of having to
define a rating scale.  He also alerted researchers to the drawbacks of rank
data, namely, that rank data are ipsative and that such data contain no
information about the preference levels of the rankers.  That is, in the case
of a judge giving ranks to three objects, the ranks must be “1”, “2”, and
“3” irrespective of what the objects are or how much they differ.  For
instance, Mike likes green over purple and he loves both colors.  Nick
also prefers green over purple but he hates either color.  The ranks them-
selves give no information on how much Mike or Nick like these colors.

Further, the ranks assigned to a basket of objects depend on what
else is in the basket.  A child prefers “chocolate” (rank 1) over “straw-
berry” (rank 2) if these are the only ice-cream flavors available.  But when
mango is available, he prefers it to strawberry.  So ranking becomes choco-
late (1), mango (2), strawberry (3), if all three flavors are presented.  We
see that ranking differences are not item free and therefore ranks are not
measures.
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Linacre conceptualizes ranks as a special case of the rating model in
which objects are given the rating corresponding to their ranking scale.
With this approach the problem of tied ranks is easily solved.

Conclusion

Rasch measurement provides a complete solution to almost every
measurement problem encountered in science.  It is especially apt for
social science, where the raw data is so unruly and so vaguely conceived.
An easy way to begin Rasch measurement is to down load MINISTEP
and its manual from www.winsteps.com and to run some of the included
examples.  As one’s understanding increases, one can turn the program to
25 item by 100 respondent segments of one’s own data to see how useful
the program can be for one’s own work.  If the result is satisfying and a
version of the program with greater than 25 x 100 capacity is desired,
then WINSTEPS itself with capacity 10,000 x 1,000,000 can be obtained
through the same home page.
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