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The present study aimed to develop a short form of the Spanish version of the Nottingham 
Health Profile (NHP) by means of Rasch analysis. Dala from several Spanish studies that 
induded the NHP sinee 1987 were collccted in a common database. Forty-five different 
sludies were included, covering a total of 9,419 suhjccts both from the general population 
and with different clinical pathologies. The overall questionnaire (38 itcms) was 
simultaneously analyzed using the dichotomous rcsponse model. Parameter estimates, 
model-data fit and separation statistics were computed. The items of the NHP were 
additionally regrouped into two different scales: Physical (19 items) and Psychological 
(19 items). Separated Physical and Psychological parameter estimates were produced 
using the simultaneous item calibrations as anchor values. Misfitting items were deleted, 
resulting in a 22 item final short form (NHP22) -11 Physical and 11 Psychological-. The 
evaluation of the item hierarchies confirmed the construct validity of the new questionnaire. 
To demonstrate the invariance of the NHP22 item calibrations, Rasch analyses were 
performed separately for each study included in the sample and for several 
sociodemographic and health status variables. Results confirmed the validity ofusing the 
NHP22 item calibrations to measure different groups of people categorized by gender, 
clinical and health status. 
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Introduction 

Any health problem can place substantial limitations on the normal de­
velopment of physical, emotional and social aspects of a patient's life. 
The increasing interest in measures reflecting the personal viewpoint of 
patients has led to an extended demand for reliable and valid standardized 
questionnaires of health related quality of life (HRQOL) (Guyatt et aI., 
1994). Currently, a number of HRQOL instruments are being used to as­
sess the health status of both individuals and populations (McDowell et 
aI., 1987). These questionnaires can differ in numerous manners (I. e., 
goals, content, methods, culture of origin ... ). Considering aspects such 
as item content, scope and target population, instruments can be basically 
classified as generic or disease-specific (Guyatt et aI., 1991). Each cat­
egory has its advantages and disadvantages. Specific questionnaires im­
prove the sensitivity of the measurement because they are specially 
designed to be used for a particular disease (Stucki et aI., 1995), but they 
are not applicable to the general popUlation or any other condition. Ge­
neric health measures (e.g. SF-36 Health Survey (Ware et aI., 1993). 
Nottingham Health Profile (European Group for Quality of Life Assess­
ment and Health Measurement. 1993), Sickness Impact Profile (Bergner 
et ai., 1976» make conlparisons possible between different conditions. 

The Nottingham Health Profile (NHP) is a generic measure of sub­
jective health status focusing on distress that was originally developed in 
Great Britain in the late 1970s and which is used extensively in several 
European countries (European Group for Quality of Life Assessment and 
Health Measurement. 1993). It contains 38 items with a 'yes/no' response 
format, describing problems on six health dimensions (Energy, Pain, 
Emotional Reactions, Sleep, Social Isolation and Physical Mobility) -See 
appendix A-. The Spanish version of the questionnaire was obtained after 
an accurate translation process aimed at achieving conceptual equivalence 
(Alonso et aI., 1990). It has proved to be valid and reliable in several 
groups of patients (Permanyer-Miralda et aI., 1991; Alonso et al., 1992; 
Alonso et al., 1994; Badia et al., 1994). The authors of the original ver­
sion assigned weights to each NHP item in order to appropriately address 
the clear disparity in the magnitude of the problems described by each 
item. Within each dimension (scale), items were weighted using the Case 
V of the Law of Comparative Judgment (LCJ) proposed by Thurstone 
(Mckenna et al., 1981). NHP item weights were also replicated for the 
Swedish (Hunt et aI., 1987), French (Bucquet et al., 1990) and Spanish 
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(Prieto et al., 1996) versions of the questionnaire in order to assess cross­
cultural equivalence and validate the adaptation process. However and 
since the model used for obtaining the Spanish item weights did not fit the 
data for 5 dimensions of the questionnaire, the use of an unweighted NHP 
scoring has been recommended for the Spanish version (Prieto et al., 1996). 
Scores for this purpose are obtained by summing the number of affirma­
tive answers in each scale in the questionnaire and expressing this num­
ber as a percentage, range 0 (best health status) to 100 (worst health status). 

Although the Spanish version of the NHP has proved to be valid and 
reliable under a measurement model developed by fiat (Torgerson, 1958), 
the support for a dimensional perspective of health related problems is 
weak. Previous work has not evaluated whether the items of the NHP 
dimensions form a hierarchical item continuum, whether the items repre­
sent a single dimension, nor whether the item hierarchy is reproducible 
across different samples of patients and test occasions. Validation of these 
scaling properties is a necessary requirement for objective measurement 
(Wright et aI., 1979). The unidimensionality of the NHP component scales 
has been simply based on the interpretation of Cronbach' s Alpha, inter­
item correlations and summation of raw scores (Alonso et aI., 1994). 

In addition to these facts, the length of the NHP (38 items) could be 
a barrier in using it for clinical purposes since the questionnaire might 
require excessive patient or physician time. The profile structure of the 
questionnaire can also bar its use in clinical settings given the difficulty 
in providing a global interpretation of the 6 different scores offered by 
the instrument. As a result, the question arises whether it would be pos­
sible to develop a shorter version of the NHP, based on a single summary 
score (index), so that it would be reliable and valid under the perspective 
of objective measurement. 

The Danish mathematician Georg Rasch proposed an alternative 
scaling approach based in the logistic response model that fully warrants 
objective measurement (Rasch, 1960). The Rasch analysis builds a vari­
able continuum based on the responses of persons in the sample to the 
items in the scale, such that persons with "more health impairment" have 
higher probabilities for giving responses of "limitation" to items than per­
sons with "lower health impairment". 

The present study aimed to develop a short form of the Spanish ver­
sion of the NHP by means of Rasch analysis with a large national data­
base of Spanish patients and non-patients. Selection of items was guided 
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in such a way that the final questionnaire forms a hierarchical and unidi­
mensional index, reproducible across multiple patient groups. Specifi­
cally, we examined: (1) how well the items of the short version contribute 
to define a single "health" variable, (2) how effective the items are in 
defining this variable, (3) how the items arrange on the variable continuum, 
and (4) the invariance of item calibrations across patients with different 
conditions, levels of perceived health status and gender. 

Data and Methods 

Subjects 

Data collection intended to gather all the studies that had included 
the Spanish version of the NHP since it was released for general use in 
1987. Studies were identified by searching Medline and the Spanish Medi­
cal Index from 1987 to 1995 (Key terms: Nottingham Health Profile, NHP, 
quality of life, measure of health status, questionnaire, reliability, valid­
ity, Spanish, and Spain). Studies were also identified by inspecting the 
Spanish NHP "cession of use" registry maintained since 1987 by one of 
the authors of the present paper (JA). From the 119 identified NHP stud­
ies, data was only available in 45 of them, covering a total of 9,419 indi­
viduals. In all studies, thc Spanish version of the NHP had been 
administered. Also, we collected additional information on age, gender, 
and general health status (response choices: Very good, Good, Fair, Poor, 
Very poor), among others through a questionnaire to the principal investi­
gator of each study. 

Methods 

The complete version of the Nottingham Health Profile (NHP38) 
was consecutively item analyzed following the Rasch dichotomous re­
sponse model. The dichotomous response model (Wright et ai., 1979), 
suitable for the Yes/No response choices of the NHP items, specifies 
through log-odds that the probability of response of person n to the item 
i is governed by the location B of the subject (person measure) and the 
location D of the item (item calibration) along a common measurement 
continuum: 

Log [PnillPnio]=Bn-Dj 

where, Pnil is the probability of a Yes response to the item i and Pniois the 
probability of a No response. When Bn>Dj' there is more than a 50% chance 
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of a Yes response. When B 
n
=D.,

I 
the chance for a Yes response is 50%. 

When B <D., the probability is less than 50%. 
n I 

Each facet in the model (B,D) is a separate parameter. The effects of 
one parameter are free from the effects of the others (Rasch, 1960; Wright 
et aI., 1979; Wright et aI., 1982). This mathematical property enables "test­
free" and "person-free" measurement to occur, a prerequisite for objec­
tive measurement. "Test-free" means that person measures do not depend 
on which items are used to measure them. "Person-free" means that item 
estimates do not depend on which sample is being measured. 

The item calibrations define the hierarchical order of severity of the 
NHP items along the health continuum. Item calibrations are expressed in 
log-odd units (1ogits) that are positioned along the hierarchical scale. A 
logit is defined as the natural log of an odds ratio. An odds-ratio for an 
item is the level of severity of the item in relation to the severity of the. 
total set of items, with logits of greater magnitude representing increasing 
item severity. The unidimensionality of the scale is determined by the 
pattern of item goodness-of-fit statistics. The goodness-of-fit statistics 
compare each person's observed responses to the expected response pat­
tern for each specific overall score (Wright et aI., 1979). 

Rasch analyses were performed using the computer program 
BIGSTEPS version 2.73 (Wright et aI., 1997). To avoid negative values, 
BIGSTEPS estimates were rescaled in Response Probability Scaling Units 
(Chips) in all the analyses by establishing a new origin (50 units) and 
spacing (9.1 units!l logit) of the scale (Wright et al., 1979). In order to 
determinate the spacing of each estimate, an associated standard error 
(SE) was calculated for each item. Other separation indices, indicating 
the extent to which items and persons identify a useful variable line, were 
also calculated (Wright et aI., 1982). The person separation index gives 
the sample standard deviation in standard error units: it equals the square 
root of the ratio of true variance of person measures to the error variance 
due to person measurement imprecision. The item separation index indi­
cates how well items spread along the variable line by giving the item 
standard deviation in calibration error units. Reliability (R) of person and 
item separation is provided by the relationship between R and separation 
(SEP): 

R = (SEP)2 ! (1 +SEP) 2 

Infit and outfit mean square statistics (MNSQ) were used to deter­
mine how well each NHP item contributed to define the common health 
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variable (Goodness-of-fit test) (Wright et al., 1979). Infit identifies unex­
pected responses of items close to the respondent's measure levels. Outfit 
detects unexpected responses to items which are distant from the 
respondent's measure levels. An item with a MNSQ near 0 indicates that 
the sample is responding to it in an overly predictable way. Item MNSQ 
values of about 1 are ideal by Rasch model specifications, since it indi­
cates local independence. Items with MNSQ values greater or equal to 
1.3 were diagnosed as potential misfits to Rasch model conditions and 
deleted from the assessed sequence. Successive Rasch analyses were per­
formed until a final set of items satisfied the model fit requirements. 

A single summary score of the NHP has the advantage of simple 
interpretation at the expense of ability to detect different patterns of health 
impairment. In order to lessen the potential loss of sensitivity of the new 
short questionnaire, two additional scoring options were taken into ac­
count. Considering results of principal components analysis of residuals 
from expectation as well as previous experience with the questionnaire, 
the 38 items of the NHP were regrouped into two new scales before fur­
ther Rasch analyses were performed: a Physical Scale (containing En­
ergy, Pain and Physical Mobility dimensions) -19 items- and a 
Psychological Scale (containing Emotional Reactions, Sleep and Social 
Isolation) -19 items-. Physical and Psychological items were jointly cali­
brated in order to investigate improvements in scale definition when all 
items were in the same unit of measurement. Parallel to each consecutive 
Rasch analysis of the items, separate Physical and Psychological item and 
person measures were also produced using the simultaneous item calibra­
tions as anchor values. The displacement of each estimate away from the 
statistically better value, which would result from the best fit of the data 
to the model, was provided for each Physical and Psychological item. 
Pearson's correlation coefficients were calculated between NHP22, Physi­
cal and Psychological person measures. 

To determine whether the final set of item calibrations was invari­
ant, Rasch analyses were performed separately for each substudy included 
in the common database, as well as by gender, age and health severity 
groups. For this purpose, two severity groups expected to differ in physi­
cal and mental health status were defined. Using information provided by 
the studies under analysis, two mutually exclusive disease-severity groups 
were formed: Patients and Non-patients. Additionally, when the informa­
tion was available in the original study (50% of the overall sample), indi­
viduals were also classified in another two health severity groups: those 
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reporting a "Very good" or "Good" general health status (Group 1), and 
those indicating "Fair", "Poor" or "Very poor" health (Group 2). In order 
to perform an additional validation study on the stability of the item cali­
brations of the new short form, subjects in the initial common database 
were randomly split into two different subsamples. Main analyses de­
scribed above were performed in subsample A (85%, n=8,015)) and re­
peated in subsample B (15%, n=1,404). 

Results and Discussion 

Table 1 presents the main characteristics of the population in the 
common database created from the 45 studies. The mean age of the over­
all sample was 57 (range 12 to 99). Although significant differences were 
found for gender distribution (probably due to the high sample size), nearly 
50% of the sample were female. Subjects came from the general popula­
tion or were patients with different clinical pathologies. Around 50% of 
the dataset were made up of non-patients. 

The simultaneous Rasch analyses ofthe 38 items of the NHP showed 
9 misfitting items (PM8, EN1, EN2, P7, SLI. SL2, S03, EM8, and EM5): 
INFIT MNSQ statistics ranged from 0.78 to 1.30 (standard deviation=O.14) 
and OUTFITMNSQ ranged from 0.62 to 2.39 (standard deviation=O.4I). 
These 9 as well as other misfitting items detected over the course of 5 
subsequent Rasch analyses were successively removed until there was no 
further improvement in the fit requirements. In this process, 16 different 
items were erased from the analyses, finally reducing the initial question­
naire to 22 items (NHP22). The component item calibrations, standard 
errors and fit statistics of NHP22 are reported in Table 2. A map of items 
and persons distribution is provided in Figure 1. There were 6,052 people 
measurable for this Rasch analysis. Data was missing for 456 persons. 
Also, 1,956 individuals were deleted from the overall analysis since they 
either reported no health problem (n=I,361), or indicated every health 
problem contained in the questionnaire (n=146) . Items are arranged in 
more severe to less severe health status. The items varied in severity from 
31.11 to 70.28 chips with standard errors of .28 to .49. Eighteen of the 22 
items fit to define a unidimensional variable according to Rasch specifi­
cations (INFIT and OUTFIT MNSQ < 1.3). The 4 items which misfit 
(OUTFIT MNSQ 1.3) were retained for practical considerations dis­
cussed below. The standard deviation of the INFIT and OUTFIT MNSQ 
dropped to 0.09 and 0.24 respectively. Person separation for the NHP22 
was 2.08 (R=0.81) and item separation was 27.51 (R=l). 

http:deviation=O.4I
http:deviation=O.14
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The item hierarchies of the Physical and Psychological subscales of 
the NHP22 are reported in Table 3. Maps of items and persons distribu­
tion appear of Figure 2. The displacement of the estimates from the an­
chored measure of the simultaneous calibration was slight (Range, in 
absolute values, 0 to 3.8 chips for the Physical Scale and 0 to 1.3 chips for 
the Psychological Scale). Nine of the 11 Physical items and 10 of the 11 
Psychological items fit to define a unidimensional variable. Person sepa­
ration was 1.39 (R=0.66) and item separation was 30.23 (R=l) for the 
Physical scale. For the Psychological scale, person separation was 1.24 
(R=0.61) and item separation was 22.05 (R=l). The 3 items which misfit 
(PMland PM4 for Physical, and EM1 for Psychological) were the same 
which misfitted in the simultaneous calibration of Table 2. The outfit sta­
tistics indicate there were a few unexpectedly high and low scores across 
individuals for these items. Considering (1) that their extreme positions 

Table 2 
NHP22 item hierarchy (11=6,052 persons) 

INFIT OUTFIT 
NHP22 ITEMS MEASURE SE MNSQ MNSQ 

PM3-UNABLE WALK SICK 70.28 .49 .93 1.03 
S05-PEOPLE HARD 64.52 .43 1.08 1.40 
PM1-WALK LIMITED 61.04 .39 1.07 1.30 
S02-CONTACT HARD 58.37 .37 1.06 1.28 
P2 -AWFUL PAIN 57.65 .35 .91 .86 
S04-IM A BURDEN 56.81 .34 .97 .95 
EM4·DA YS DRAG 54.87 .33 .92 1.02 
PM6-HARD TO DRESS 54.60 .33 .91 .77 
EM6·NO CONTROL 54.01 .33 .96 .96 
P8 -SITTING PAIN 52.59 .32 .96 .89 
EM9-DEPRESSED 48.76 .30 .95 .92 
PM5-REACH HARD 48.25 .30 .88 .76 
EM2-JOY FORGOTTEN 46.31 .30 1.05 1.13 
EN3-0UT OF ENERGY 46.16 .30 .88 .81 
SL3-CANT SLEEP 45.57 .29 1.00 .94 
P3 -CHANGE PAIN 43.65 .29 .95 .99 
SL5-SLEEP BADL Y 43.14 .29 .96 .96 
SL4-SLOW TO SLEEP 41.93 .30 1.11 1.26 
P4 -WALK PAIN 41.81 .29 .98 1.00 
EM1-GETTING DOWN 40.02 .32 1.24 1.55 
PM2-HARD TO BEND 38.54 .28 .99 1.03 
PM4-STAIRS HARD WELL 31.11 .30 1.06 1.68 
MEAN 50.00 .33 .99 1.07 
SD 9.16 .05 .09 .24 
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in the hierarchy are nevertheless conceptually valid and (2) that their ex­
clusion substantially decreased the person separation index of the ques­
tionnaire these misfitting items were retained here and in the simultaneous 
analysis in Table 2. 

The person measures from the separate calibration of Physical items 
correlated 0.92 with the simultaneous calibrated person measures. For the 
person estimates from the Psychological items this correlation was 0.91. 
Physical and Psychological measures correlated 0.70. These correlations 
demonstrate that the Physical and Psychological person estimates are sub­
stantially associated with each other and highly associated with the si­
multaneously calibrated person estimates, indicating a common underlying 
construct. 

From Tables 2 and 3, a logical sequencing of the health problems 
depicted by the items can be observed (Figures 1 and 2), supporting the 
construct validity of the obtained responses. Mild health problems such 

Table 3 
NHP22 Physical and Psychological item hierarchies 

PHYSICAL SCALE (n=5,003 persons) -
ANCHORED INFIT OUTFIT 

ITEMS MEASURE SE DISPLACE MNSQ MNSQ 
PM3-UNABLE WALK SICK 70.3 .5 3.2 .82 .96 
PM1-WALK LIMITED 61.0 .4 1.8 1.03 1.35 
P2 -AWFUL PAIN 57.7 .4 1.5 .89 .92 
PM6-HARD TO DRESS 54.6 .3 1.2 .83 .72 
P8 -SITTING PAIN 52.6 .3 .9 .93 .90 
PM5-REACH HARD 48.3 .3 .3 .83 .74 
EN3-0UT OF ENERGY 46.2 .3 0.0 .99 .99 
P3 -CHANGE PAIN 43.7 .3 -.4 .96 .97 
P4-WALK PAIN 41.8 .3 -.8 .92 .91 
PM2-HARD TO BEND 38.5 .3 -1.5 .90 .93 
PM4-STAIRS HARD WELL 31.1 .3 -3.8 .99 1.50 

PSYCHOLOGICAL SCALE (n=4,984 persons) 
ANCHORED INFIT OUTFIT 

ITEMS MEASURE SE DISPLACE MNSQ MNSQ 
S05-PEOPLE HARD SICK 64.5 .4 1.3 1.00 1.17 
S02-CONT ACT HARD 58.4 .4 .6 .96 1.03 
S04-IM A BURDEN 56.8 .4 .6 .98 1.02 
EM4-DAYS DRAG 54.9 .3 .5 .90 .89 
EM6-NO CONTROL 54.0 .3 .4 .90 .88 
EM9-DEPRESSED 48.8 .3 0.0 .86 .81 
EM2-JOY FORGOTTEN 46.3 .3 -.2 1.06 1.11 
SL3-CANT SLEEP 45.6 .3 -.2 .93 .88 
SL5-SLEEP BADLY 43.1 .3 -.5 .89 .86 
SL4-SLOW TO SLEEP 41.9 .3 ~.6 1.02 1.08 
EM1-GETTING DOWN WELL 40.0 .3 -.8 1.20 1.34 
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as PM4 "I have trouble getting up and down stairs" and EM I "Things are 
getting me down" are easy to endorse and are found in the bottom of the 
health severity continuum. More severe items such as PM3 "I'm unable 
to walk at all" and S05 "I'm finding it hard to get on with people", are 
found in the top of the continuum. The substantial and reliable person 
separation (PS) indices obtained for each measure (PS range 1.24 to 2.08; 
reliability range 0.61 to 0.81) suggestthatthe sample of individuals in the 
study was well targeted by the questionnaire. Person separation indexes 
produced 3 statistically distinct person strata (Wright et aI., 1982) identi­
fied by the NHP22 scale, and 2 for the Physical and the Psychological 
scales. Item separation indexes (range 22.05 to 30.23; reliability = 1) also 
indicate a good and reliable separation of the items along the variables 
which they define. 

The multiple box plot in Figure 3 summarizes information about the 
distribution of the NHP22 item calibrations across the different studies 
composing the sample. All the item calibrations for each study were stan­
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dardized by subtracting the value of the corresponding item measure in 
Table 2, and thus expressed in units of displacement from these values. 
The lower boundary of each box is the 25th percentile, and the upper bound­
ary is the 75th percentile. The horizontal line in the box represents the 
median. The box plot includes two categories of cases with outlying val­
ues. Extreme values (crosses) are cases with values more than 3 box­
lengths from the upper or lower edge of the box. Outliers (squares) are 
cases with values between 1.5 and 3 box-lengths from the edge of the 
box. Lines are drawn from the ends of the box to the largest and smallest 
observed values that are not outliers. The majority of the items showed 
median displacements close to 0 as well as similar distributions of cali­
brations. The spread of non-outliers displacements was slight, mainly fall­
ing between ± 10 units of displacement (± 1.1 logits), suggesting the 
invariance of item calibrations across different groups of individuals. The 
larger spread of item scores was observed between the items located in 
the extremes of the continuum, especially for those items showing misfit 
in Table 2 (S05, PM1, EMI and PM4). Extreme values and outliers var­
ied between ± 30 units of displacement (± 3.3 logits). Only one item (PM3) 

·40 

·50~~~~~~~~~~~~~~~~~~~~~~ 

NHP22 ITEMS 

Figure 3. NHP22 item scores by study 
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showed an extreme displacement beyond 40 units. Most of the extreme 
values and outliers were due to a minor group of studies, basically char­
acterized for their composition ofyoung individuals without serious health 
problems, for whom the questionnaire would be too severe. 

The item plots in Figure 4 compare the severity of NHP22 items ob­
tained by gender, patient status, general health and sample of analysis. 
Pearson's correlation coefficients were 0.96 for gender, 0.97 for patient sta­
tus, 0.96 for general health and 1.00 for sample, placing the NHP22 item 
severities between categories close enough to an identity line to conclude 
that they are comparable across the defmed categories ofeach group. Differ­
ences in item calibration between samples (85% Vs 15%) were almost non­
existent, confinning the validity of the overall item calibrations in Table 2. 

Conclusion 

The Spanish version ofthe Nottingham Health Profile (NHP) was short­
ened to 22 items (NHP22) by means of Rasch analysis. Through goodness­

.. 
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of-fit statistics and the investigation of the hierarchy of item calibrations, a 
unidimensional view of health of the NHP22 was confirmed. Physical and 
Psychological measures were also calculated for the NHP22. In this way, the 
NHP22 offers the possibility to be scored in three modes: (l) a global score 
based on the 22 items, (2) a Physical score based on only 11 items and (3) a 
Psychological score based on the remaining 11 items. Given the adequate 
measurement properties shown by the Physical and Psychological items, both 
scales might be independently administered to individuals. These alternatives 
in scoring provide clear advantages in understanding and presenting results 
over the original six-dimension profile of the NHP 

Although there were some differences in the hierarchical structures of the 
various sets of NHP22 item calibrations obtained by study, gender, patient and 
health status, the significance of these discrepancies wa<; slight. Thus, our re­
sults could be ea<;ily generalized to males and females with different health 
status, ranging from general population to those clinical pathologies included in 
the study. The item measures in Table 2 should be used to measure new people. 

Further research is nevertheless necessary to conftrm the utility and sta­
bility of the item calibrations found for the NHP22. An important limitation 
in our study is that all the data used to select the items of the NHP22 were 
based on infonnation gathered using the original NHP of 38 items. Although 
unlikely, it is possible that the framework of the total NHP might have influ­
enced the results found. Using the NHP22 as an independent instrument will 
have to reproduce results as well as to prove its utility as a generic measure of 
health related quality of life. However, our conclusion is that the 22-item 
selection provides a promising shmt alternative for the original NHP under 
the perspective of objcctive measurement. 
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Appendix A 

THE 38 ITEMS OF THE NOTTINGHAM HEALTH PROFILE 

ENERGY 
ENl I'm tired all the time 
EN2 Everything is an effort 
EN3 I soon run out of energy 

PAIN 
Pl I have pain at night 
P2 I have unbearable pain 
P3 I find it painful to change position 
P4 I'm in pain when I walk 
P5 I'm in pain when I'm standing 
P6 I'm in constant pain 
P7 I'm in pain when going up or down stairs 
P8 I'm in pain when I'm sitting 

EMOTIONAL REACTIONS 
EM1 Things are getting me down 
EM2 I've forgotten what it's like to enjoy myself 
EM3 I'm feeling on edge 
EM4 These days seem to drag 
EM5 I lose my temper easily these days 
EM6 I feel as if I'm losing control 
EM7 Worry is keeping me awake at night 
EM8 I feel that life is not worth living 
EM9 I wake up feeling depressed 

SLEEP 
SL1 I take tablets to help me sleep 
SL2 I'm waking in the early hours of the morning 
SL3 I lie awake for most of the night 
SL4 It takes me a long time to get to sleep 
SL5 I sleep badly at night 

SOCIAL ISOLATION 
801 I feel lonely 
802 I'm finding it hard to make contact with people 
803 I feel there is nobody I am close to 
804 I feel I am a burden to people 
805 I'm finding it hard to get on with people 

PHYSICAL MOBILITY 
PM 1 I can only walk about indoors 
PM2 I find it hard to bend 
PM 3 I'm unable to walk at all 
PM4 I have trouble getting up and down stairs 
PM5 I find it hard to reach for things 
PM6 I find it hard to dress myself 
PM7 I find it hard to stand for long 
PM8 I need he& to walk about outside 
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Introduction 

Health educators and health education researchers obtain or interpret sev­
eral types ofmeasurements including measurements used to evaluate health 
promotion programs, behavioral and attitudinal measurements, and clini­
cal measurements. For these types of measurements, the reliability or 
dependability of the measurement is a concern in the measurement's util­
ity and interpretation. Generally the need to assess a measurement's reli­
ability is recognized and, typically, coefficients from Classical Theory 
(CT) such as Cronbach's alpha, the test-retest coefficient of stability, the 
Spearman-Brown prophecy formula, or Kuder-Richardson formula 20, 
are used. These coefficients are often applied in measurement situations 
where they are either inappropriate or inadequate. For example, CT is 
inappropriate when the measure is criterion-referenced (Schaeffer et aI., 
1986), when an aggregate-level variable is the variable of interest (O'Brien, 
1990), or in the presence of multiple sources of eITor (Eason, 1989). As 
an alternative, Generalizability Theory (GT), can provide a unified frame­
work for examining the dependability of measurements and is appropri­
ate whether the measurement is norm- or criterion-referenced, whether 
the measurement is an individual-level or an aggregate-level variable, and 
in the presence of single or multiple sources of error. 

Superficially, it would appear that the strongest advantage GT of­
fers over CT is that it can model and estimate the variability due to a 
number ofdifferent sources of error, including interactions, simultaneously. 
Estimates of the various sources of error can then either be interpreted or 
be used in determining a reliability coefficient. But GT's value as a uni­
fied framework within which to examine the reliability of measurements 
goes beyond this. GT's unified framework for examining the reliability 
of measurements for both relative and absolute decisions has a particular 
value to health practitioners because criterion-referenced measures are 
prevalent in the health sciences (Schaeffer et aI., 1986). In addition, GT 
applies the same methodology to all sources of error and all possible ob­
jects of measurement. Thus, the same framework can be used to examine 
the dependability of measurements whether the object of measurement is 
organizations or individuals, and whether items, test forms, occasions, 
raters, or any combination of these are the sources of error. Thus, unlike 
CT with its multitude of formulas, GT represents a unified approach to 
examining the dependability of measurement processes. 
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GT's unified approach relies on the powerful and flexible machin­
ery of random and mixed linear models (Kemp thorne, 1957; Scheffe, 1959; 
Searle, 1971) and variance components estimation. GT emphasizes esti­
mating and interpreting variance components rather than simply obtain­
ing a single number index of reliability. This emphasis on the estimation 
of variance components is rooted in GT's focus on understanding the vari­
ability inherent in measurement processes or, in GT terms, assessing the 
"dependability of measurements". While many applications of linear 
models focus on applying fixed or mixed linear models to comparing treat­
ment effects, GT emphasizes applying random and mixed linear models 
to assess measurement error, and to understand the impact of sources of 
error on the reliability of measurements. 

While GT provides a broad view of the dependability of measure­
ments, it is important to recognize that coefficients derived from GT are 
reliability coefficients (O'Brien, 1995) and there may be disadvantages to 
using terminology that separates GT from notions of reliability. The phrase 
"dependability of measurements" is typically associated with the broader 
notion (Cronbach et aI., 1972). However, O'Brien emphasizes the value 
of appropriately labeling coefficients derived using this theory as "reli­
ability" coefficients. 

Within the context of a broader notion of the dependability of mea­
surements, GT places an emphasis on asking the right questions and on 
appropriately modeling measurements (Kane, 1993). Appropriate use and 
interpretation of measurements requires simultaneous consideration of 
the ultimate use of measurements, the quantities or behaviors (true scores) 
estimated by the measurement, and the manner in which samples are ob­
tained and used to estimate true scores. GT emphasizes the impact of 
these aspects of the contextual framework on modeling observations and 
on estimated scores. 

The GT literature suggests that this emphasis on context is unique to 
GT. However, similar emphasis has arisen in any subject area to which 
linear models or other statistical technical machinery have been exten­
sively applied. For example, Cox (1958) discusses concerns in the de­
sign of experiments, while Croxton and Cowden (1955) discuss many 
issues that are of concern in the collection and interpretation of data. Panse 
and Sukhatme (1954) also discuss similar issues in planning and inter­
preting agricultural experiments. 

Brennan (1997) notes that (p 17) "Most published generalizability 
analyses are in the educational literature ... " and that (p 18) "G theory 
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seems very much underutilized in psychological and medical areas." Even 
so, GT has been used even less in the health education literature than in 
the medical and nursing literature where it has been used by some re­
searchers to assess the dependability of various clinical measurements. 
Some of these measurements such as blood pressure (BP) (Llabre et aI., 
1988; Szalai et aI., 1993) are of interest to health educators, and the inter­
pretation and dissemination of information from these studies lie within 
the domain of the health educator. Other applications of GT to clinical 
measurements have involved isometric force measurements (Roebroeck 
et aI., 1993), passive ankle dorsiflexion measurements in children (Watkins 
et aI., 1995), surface electromyographic measurements (Hatch et aI., 1992), 
aortic blood flow measurements using Doppler echocardiography 
(Kusumoto et at., 1995), and functional performance measurements of 
Alzheimer patients (Carswell et aI.. 1995). Other applications of GT in 
the literature include assessing reliability for patient classification sys­
tems (McDaniel, 1994), and proposing guidelines for interpreting indica­
tors of residency program performance (Norcini & Day, 1995). While 
these applications appear in the medical and nursing literature, health 
educators deal with similar problems and can apply these same methods 
to the problems they encounter. 

The purposes of this paper are to explicitly consider the different 
contexts within which GT is applied, and to focus on the power and flex­
ibility of GT's linear models methodology to appropriately model mea­
surement situations that have relevance to the health educator. ANOVA 
and the underlying linear models have a well-developed methodological 
machinery available that is not being fully exploited -- even by those who 
are currently applying these methods to the reliability of measurements. 
It is our goal to indicate how this machinery might be used by health 
educators. 

We present a brief overview of elementary GT concepts in the next 
section. Fundamentals of GT are discussed in more detail in the refer­
ences cited. Shavelson and Webb (1991), Webb et ai. (1988), and 
VanLeeuwen (1997) provide introductions to GT with presentations of 
numerical examples. Additional introductory papers include Shavelson 
et ai. (1989), Eason (1989), and Brennan and Johnson (1995). Brennan 
(1983) presents detailed information on the GT analysis of many mea­
surement designs. While Cronbach et aJ.'s (1972) treatment is compre­
hensive, their discussion is too technical to be widely accessible to 
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practitioners (Thompson, 1991) but Shavelson and Webb (1991) provide 
a treatment that is accessible to practitioners (see reviews by Thompson, 
1991; Brown, 1992; Kane, 1993). These references provide numerical 
examples and technical details on variance components estimation. 

GT Basics 

GT considers two types of studies: generalizability (G) studies are 
associated with the development of a measurement process while deci­
sion (D) studies obtain measurements for a particular purpose. Informa­
tion from G studies are used to design D studies that yield measurements 
having the desired level of reliability for some decision-making purpose. 
Typically, in GT the object of measurement is people or subjects, although 
in many applications in health science it may be organization. Krule (1993) 
notes that a strength of GT is the range of possibilities in defining the 
object of measurement. Because organizations rather than individuals 
may be treated as the object of measurement, GT has relevance in a num­
ber of health science applications. 

Facets are potential sources of error. For example, if BP readings 
are taken on several days, then averaged to obtain a measurement of a 
person's underlying BP, the person is the object of measurement, while 
days are a facet or source of error. If the average is taken using five 
readings from five different days, then the study includes five conditions 
(i.e., different days) ofthe facet days. Similarly, facets may be test items, 
testing occasions, and, in situations where organizations are the object of 
measurement, even individuals with different individuals representing 
different conditions of the facet individual. 

Central to GT is the notion of a universe of generalization. Specifi­
cation of the universe of generalization is the responsibility of the deci­
sion-maker (Brennan, 1983). As noted by Kane (1993) this aspect of 
GT's framework places emphasis on asking the right questions. This frame­
work is different from that of CT and Kane indicates that this emphasis 
on asking the right questions is one of the major contributions of GT. The 
universe of generalization is the entire universe of possible observations 
to which the decision-maker wishes to generalize. Brennan (1983) notes 
that, based on this universe, the decision-maker must decide which facets 
are fixed and which are random. Random facets are simply those facets 
for which universe conditions have been sampled. This sample is either a 
random sample, or it may be an "exchangeable" sample of conditions. In 
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some instances, a facet is fixed. This is the case in Llabre et al. (1988) 
where they include measuring device as a facet. The three conditions of 
measuring device, ambulatory monitor, mercury sphygmomanometer, and 
Dinamap, are the only three conditions of measurement device present in 
the universe of generalization. The technical details of modeling fixed 
effects are not discussed here, however, Brennan (1983) serves as a refer­
ence for the analysis of both random and mixed models. Since the uni­
verse score is the object of measurement's average score over all 
combinations of conditions in the universe of generalization and a test 
score is based only on a random sampling of the conditions of either some 
or all of the facets in the universe of generalization. the test score is only 
an estimate of the universe score. 

In many instances, a G study deals with a slightly broader universe 
than the D study's universe of generalization. This broader universe is 
called a universe of admissible observations. A single G study, with ap­
propriate sampling from the universe of admissible observations, may 
provide infonnation that can serve as a basis for planning a number of 
different D studies each having a different universe of generalization. 

GT as an Extension of CT 

Kane (1993) notes two ways to think about GT. He states (p 271-2) 
"One way to think about generalizability theory is as an extension of clas­
sical reliability theory with G theory addressing basically the same issues 
as the classical theory but doing so in a more general and flexible way ... 
Another way to think about G theory is as a framework for thinking about 
the dependability of measurements, one that encourages the decision maker 
to fonnulate the questions that need to be addressed for a specific D study 
and thcn to seek answers to those questions." In this section we consider 
GT as an extension of CT. We introduce the basics of linear modeling 
and show how these models allow consideration of both relative and ab­
solute decisions as well as allow a multi-faceted model of measurement 
error. In the next section we consider GT as a framework for thinking 
about the dependability of measurements. 

The single facet pxi design 

GT's generality and flexibility is a result of the linear models tech­
nical apparatus used to model, think about, interpret, and estimate the 
variability due to various sources of error. Consider a simple behavioral 
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score based on using mUltiple items where the same set of items is admin­
istered to each person (i.e., item is crossed with person, denoted pxi). 
Suppose that a typical CT measure of internal consistency such as 
Cronbach's alpha, is used to estimate the reliability of the score. The 
basic CT model states that a given person's response on each question is 
simply the sum of the person's underlying behavioral characteristic and 
an independent error. Thus the CT model is 

person item score == person's true value + error. 

But the GT model for this situation says 

person item score = grand mean + person main effect + item main 
effect + (person x item interaction effect, and error). 

While GT's (grand mean + person main effect) is equivalent to CT's 
(person's true value), CTomits consideration of the item main effect. Thus, 
this simple situation having only a single facet - items - illustrates a funda­
mental difference between the GT model and the CT model. Addition­
ally. because of this difference, CT applies only to relative decisions while 
GT can deal with both relative and absolute decisions. 

Relative or norm-referenced assessments indicate one's standing in 
a score distribution as compared to that of others within the norm group 
(Isaac and Michael, 1990). That is, relati ve decisions are essentially based 
on rankings within some group. GT allows items to vary in difficulty 
while CT assumes that items are equally difficult or that each item mea~ 
sures the same amount of the underlying attribute for each person. CT 
ignores the item main effect and considers only error, which in this simple 
example is not separable from the person xitem interaction effect. This 
error is reflected in changes of rankings of persons when ranked using 
different items and is not associated with overall differences in item diffi­
culty as is the item main effect term. Thus CT considers only that portion 
of the error affecting rankings. 

Absolute or criterion-referenced assessment reveals one's mastery 
level of knowledge, attitudes or behavior as compared to specific knowl­
edge, attitude or behavioral criterion (Isaac and Michael, 1990). Schaeffer 
et al. (1986) note that criterion-referenced measures are common in health­
education applications, that CT is not appropriate for such measures, and 
suggest alternatives, including GT, to assessing reliability of such mea­
sures. Item main effect variability has an impact on the absolute score 
(but not the rankings) and must be considered to correctly assess the reli­
ability of criterion-referenced decisions. 
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Table 1 

Overview of the one facet pxi design with person (p) as the object ofmeasure­
ment and item (i) as the single facet. 

Number of Conditions Associated Variance 
Source Sampled Component 

person 

item 

error 

relative error = G Coefficient = 
2 

2 0, 
01' +­

nj 

absolute error = 
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phi (4)) coefficient = 
2 

2 
a, 

2 
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0p +- +­
II j I1 j 

GT provides two general purpose reliability coefficients as well as a 
coefficient or index for domain-referenced interpretations involving a fixed 
cut-off score (Brennan, 1983; Shavelson and Webb, 1981). We focus on 
the G coefficient for relative assessment, and the phi coefficient for abso­
lute assessment. As illustrated in Table 1, the G coefficient for the single­
facet situation involves the variance components for both the object of 
measurement and error. The phi coefficient, however, involves all three 
variance components. Item variability affects the absolute magnitude but 
not the relative placement of person's scores. Thus item variability contrib­
utes to error variability for absolute decisions but not for relative decisions. 

Behavioral or knowledge measurements may be either norm- or cri­
terion-referenced. However, this will seldom be the case with clinical 
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measurements. For example, to tell someone they are in the 90th percen­
tile for blood pressure is meaningless!! This rank doesn't tell them what 
they need to know, they want to know the true value of their BP and are 
looking for it to be within the acceptable level for individuals in their age 
group. 

The G coefficient and the phi coefficient have often been referred to 
as "reliability-like" coefficients, but O'Brien (1995) points out that the G 
coefficient is a reliability coefficient. That G coefficients are reliability 
coefficients is underscored by the fact that for the simple one-facet situa­
tion, there is an equivalence between reliability coefficients produced by 
CT and those produced by GT. In particular, the G coefficient of Table 1 
is equivalent to Cronbach's alpha as well as Kuder-Richardson Formula 
20 (Cronbach et al.. 1972). Additionally, Cronbach et al. (1972) show the 
equivalence between results from GT and the Spearman-Brown adjust­
ment for both the crossed design and the design having items nested within 
persons. 

Multiple facets - the pxixo design. 

One of GT's greatest and most touted strengths is that it can appro­
priately model measurement situations having mUltiple sources of error. 
For example, McGaghie et al. (1993) discuss the development of an in­
strument to measure attitudes toward pulmonary disease prevention. In 
reporting the reliability of the instrument, they report both test-retest and 
internal consistency reliabilities. This approach does not allow accurate 
assessment of the reliability of a measurement for persons (p) based on 
both multiple items 0) and occasions (0). The fully crossed design is 
denoted pxixo and has corresponding linear model 

person-item-occasion score =grand mean +p main effect + i main effect 

+ 0 main effect + pxi interaction effect + pxo interaction effect 

+ ixo interaction effect + (error, pxixo interaction). 

The fully crossed situation involves giving all the items to all the 
people on each occasion (Table 2). If different items were used on each 
occasion, then items would be nested within occasion and the design would 
be denoted px(i:o). Such a nested design can be appropriately modeled in 
GT but cannot provide separate estimates of the item main effect and ixo 
interaction variance components. Similarly, the pxi variance component 
will be confounded with the error and the three-way interaction. 
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Table 2 

Overview ofthe two facet pxixo design with person (p) as the object ofmea­
surement and item (i) and occasion (0) as facets. 

Source Number of Conditions Associated Variance 
Sampled Component 
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2
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GT allows the researcher to examine the variance components asso­
ciated with the object of measurement, facets, and all interactions. Each 
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of these variance components is then properly interpreted in the context 
of the measurement to be formed and the type of decision to be made. In 
this example, a person's score will be formed by averaging across all items 
and all occasions so that to estimate the score's error variance, each com­
ponent is divided by the number of conditions of each facet that affects 
that component (Table 2). The variance of the relative error which is used 
in estimating the G coefficient includes the error variance component as 
well as all variance components associated with an interaction with per­
sons. These are the only variance components affecting the relative place­
ments of the total scores. The variance of the absolute error includes all 
facet main effect, all interaction, and the error variance components be­
cause all of these variance components contribute to fluctuations or vari­
ability in the absolute score. Because GT's reliability coefficients use 
either the variance of the relative error (G coefficient) or the variance of 
the absolute error (phi coefficient), these coefficients are correctly tai­
lored to the form of the measurement, even if it is complex and involves 
summing over several different facets. 

Organization as the object afmeasurement 

An important strength of GT is the range of choices for an object of 
measurement (Brennan, 1983; Kane, 1993). This advantage may have 
particular relevance to health educators. 

Golaszewski et a1. (1990), note that practitioners and evaluators of 
health promotion and health education face the challenge of providing 
evidence of accountability and program efficacy by administering reli­
able measures to assess the impact of their initiatives, methods, and inter­
ventions. They apply the tools of CT to the assessment of the reliability 
of a worksite health promotion program. Their analysis, however, treats 
individuals as objects of measurement but for these programs, program 
customers were organizations comprised ofmany individuals. When com­
puting an organization or aggregate-level score using the response of many 
individuals, individuals become a source of error much like items are 
when a score is obtained for an individual by summing responses to sev­
eral items. Thus the reliability of individual scores may have little rela­
tionship to the reliability of the score for the organization. 

O'Brien (1990) notes that conditions that result in high reliability 
for aggregate-level variables (such as an overall organization score) are 
not the same as the conditions that lead to high reliability for individual­
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level scores. In fact, it is possible to have very high reliability for the 
individual-level variable but very low reliability when these individual­
level variables are summed or averaged to obtain an aggregate-level vari­
able. O'Brien (1990) considers the application of GT methodology to 
assessing the reliability of such aggregate-level variables in detail. The 
crux of his approach involves utilizing the power and flexibility of the 
linear models methodology that underlies GT to appropriately model a 
measurement situation having organization as the object of measurement 
and person as a facet. 

A simple example involving an aggregate-level variable might in­
clude organizations (0), items (i), and persons (p) within organizations. 
Such a design might be denoted by (p:o)xi. That is all items are adminis­
tered to all persons but persons are nested within organizations. This 
scenario makes sense if organization membership is mutually exclusive 
and the same set of items is administered to all of the sampled persons in 
each of the sampled organizations. Table 3 gives a brief breakdown of the 
estimable variance components and summarizes estimation of the G and 
phi coefficients when organization is the object of measurement. Due to 
the structure of the universes of admissible observations and of generali­
zation, a randomly chosen person belongs to a single randomly chosen 
organization and no separate estimate of the variance component for per­
son exists. Brennan (1975) uses GT methods to derive estimates of reli­
ability coefficients both for an aggregate-level measurement (i.e., schools) 
and for persons nested within the aggregate. In measurement situations 
where aggregate-level measurements are of interest, it is possible for in­
dividual-level scores to have high reliability even if organization-level 
scores have low reliability. This might occur if, within each organization, 
person-to-person variability were large while overall differences between 
organizations were small. In this case, if overall differences among orga­
nizations were negligible it might not be possible to form meaningful 
organization scores for the purpose of ranking the organizations. 

A fundamental flaw with CT coefficients is that, for many situa­
tions, the model on which they arc based simply is not correct - items may 
vary in difficulty, multiple sources of error may be present, or something 
other than persons may be the object of measurement. A model must be 
appropriate or nearly correct Lo provide reasonably accurate insight into 
the modeled situation. As Kane (1993) notes, GT emphasizes designing 
data analysis to fit the data but CT applies a narrowly defined prespecified 
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Table 3 

Overview of (p:o )xi design with organization (0) as the object ofmeasurement 
and persons (p) and items (i) as facets. Persons are nested within organization 
with the same number n ofperson sampled from each organization for a total 

p 

ofnpxno persons. 
Number of Conditions Associated Variance 

Source Sampled Component 

organization 

item 

person: organi zation 

organization x item 

error 

2 2 2 
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relative error = +-+-- G coefficient = 
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2 
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model to the data whether that model is appropriate or not. In cases where 
both multiple items and multiple occasions are used in obtaining a score, 
this means that CT runs the data through several analyses and comes up 
with separate "reliability coefficients" which leave one wondering what 
the actual reliability of the measurement might be. Attempts to combine 
information from these analyses are likely to be misleading since it is not 
possible from these separate analyses to determine whether or how much 
of the variability due to different facets overlaps and how much addi­
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tional error is actually due to interaction among the sources oferror (Eason, 
1989). GT, however, allows simultaneous consideration and modeling of 
all sampled sources of error and, from the model, estimates variance com­
ponents. Estimated variance components can then be used to estimate the 
reliability of even a complex measurement involving summing over sev­
eral facets. 

GT: A Powerful Tool for Examining the Dependability of 

Measurements 


GT provides a conceptual framework and the technical apparatus 
for examining the dependability of measurements. Within this concep­
tual framework, the distinct notions of a G study and a D study arise. G 
studies are associated with the development of a measurement procedure 
while D studies apply the procedure in practical terms. However, G stud­
ies vary in scope and may provide information that is the basis for a single 
D study or for several D studies. If the results of a G study show some 
facets to contribute little to the variability in a measurement, one may 
ignore or reduce the number of levels of that fact used in the D study. 
However, if a facet contributes a great deal of variability to the measure­
ment, generalizability of D study measurements may be increased by in­
creasing the number of levels of that facet used in the D study. 

G studies may be designed for the purpose of gaining broad insight 
into a measurement situation. Such a G study may provide information 
for planning a number of different D studies. One of the great contribu­
tions of GT is that it places responsibility on the researcher to consider 
carefully the measurement process and to attempt to determine all facets 
that exist in both the universe of generalization and in the universe of 
admissible observations. A carefully considered G study no longer see 
measurements in the simplistic light of CT. For example, consider de­
signing a G study to examine the reliability of blood pressure measure­
ments. The researcher should consider all potential sources of error, 
including days, and time of day, as well as the environment in which the 
measurement is taken, measuring device, and measuring device operator. 
In a G study, analysis centers on those facets that are systematically repre­
sented by sampling multiple conditions of the facet. Facets not system­
atically represented may affect the measurement process but such facets 
cannot be explicitly considered in the analysis. Cronbach et al. (1972) 
emphasize the importance of implicit facets and their impact on the inter­
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pretation of estimated coefficients. 

Implicit facets appear in one of three ways. Implicit facets may be 
held constant throughout the G study, the condition of the implicit facet 
may vary throughout the G study without direct experimenter control, or 
conditions of an implicit facet may be confounded either with the object 
of measurement or with some other facet. While G coefficients are ge­
neric reliability coefficients (O'Brien, 1995), they are also specific with 
regard to facets that are held constant at the same condition throughout 
the study. For example, many studies are thought to include the single 
facet item but, in fact, occasion may be a specific implicit facet that can 
not be accounted for in the analysis. In this case, reliability coefficients 
computed for data gathered on a single occasion are specific to that occa­
sion but generic with respect to items on that specific occasion. 

Clear description of a G study allows those attempting to use G study 
information in planning a D study to know how G study information re­
lates to their study. While implicit facets are not analyzed directly, their 
role in a G study should be reported because implicit facets have implica­
tions for the interpretation of study results and estimated variance compo­
nents. G study reports should include results such as the numbers of 
conditions of each facet and estimates of variance components. Addi­
tionally, G study reports should include descriptions of: subjects' charac­
teristics; the data collection; the nature of the conditions sampled; any 
conditions held constant; any conditions confounded with a facet; and 
any conditions intentionally allowed to vary at random without experi­
mental control (Cronbach ct aI., 1972). 

If the aim of a G study is to obtain broad insight into a measurement 
process, then a design that is as fully crossed as possible should be used. 
Crossed designs allow separate estimation of both main effect and inter­
action variance components. Information from a crossed design can be 
used in designing a nested D study. Nested designs however, do not allow 
separate estimation of some variance components and so may yield some­
what less information about the measurement process. The use of crossed 
designs for G studies has been widely advocated in the GT literature since 
these designs can be used as the basis for planning a variety of D studies. 
However, Cronbach et al. (1972) note that when components are to be 
confounded in the D study design then, a G study with similar confound­
ing will yield more precise estimates for the planning of that particular D 
study. 
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Modeling BP 

Physiological and biochemical functions such as BP tend to fluctu­
ate around some central value. Ideally, a measurement process will give a 
reliable estimate of the individual's true central value. Obtaining a reli­
able estimate requires sampling frequently enough and including all ma­
jor sources of variability in the sampling. Szalai et al. (1993) used GT to 
aITive at tables of measurement schemes that would yield "reliable" esti­
mates of an individual's central characteristic BP. Their study included 
days (d), hours within days (h:d), and replications within hours within 
days (r:h:d). One implicit facet in their study was the particular device or 
instrumentation used to measure BP. Thus coefficients estimated using 
their data are specific to that instrumentation but generic with regard to 
days, hours, and replications. 

A simple scenario might be designed to consider day to day vari­
ability in BP readings and to determine the reliability of a measurement 
obtained by averaging measurements taken on different days. Suppose 
that the G study information is obtained on the same days for all subjects 
(s), then the analysis of this situation looks very similar to that indicated 
in Table 1 but with the single facet days replacing the single facet items. 
As in the Szalai et at. (1993) study, instrumentation is a constant implicit 
facet. However, time of day also represents an implicit facet that may 
have an impact on the interpretation of the estimated variance compo­
nents and therefore also the estimated reliabilities. If all readings in the 
study are taken at a particular time of day, then the facet time of day is a 
fixed implicit facet in the study. If, instead, the time of readings is al­
lowed to vary without direct experimenter control, then time of day is still 
an implicit facet but it takes on a very different flavor. Which G study 
design is better depends on the ultimate D study situation. Suppose fu­
ture D study readings are to allow time of day to vary randomly. If time of 
day has any impact on BP, then variance components estimated using data 
gathered at a fixed time may not be accurate estimates of the variance 
components for the D study design. It is likely that a G study with time of 
day fixed will underestimate the error variance component which will 
result in an optimistic estimate of the D study reliability. Sampling de­
sign and implicit facets have an impact on the interpretation and predic­
tive utility of G study estimates. 

Presumably, the design in Szalai et al. (1993) was nested because 
within each day included in the study, a different set of hours were ran­
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domly chosen to be included in the study. Additionally, they had replica­
tions nested within hours within days so that their design was denoted by 
sx(r:h:d). We will consider and briefly compare two simpler designs, one 
crossed and one nested. The first is the sx(td) where t represents time 
(rather than hour) and the second is the sxdxt design. Note that in the 
nested design, because subject is crossed with t:d, each subject is sampled 
according to the same scheme. That is, on the same days and at the same 
time within each day. However, different times have been chosen within 
each day so that the sampling scheme varies from day to day. In the 
crossed design, a single set of random times has been selected and the 
sampling scheme stays the same from day to day. The crossed design 
may yield more information about the measurement process if there are 
daily cycles (i.e., time main effects) in BP. Table 4 summarizes key points 
of the sx(td) analysis while key points of the analysis for the sxtxd design 
are the same as for the pxixo design· of Table 2. The crossed design al­
lows separate estimation of seven different variance components while 
the nested design allows estimation of only five. In particular, the time 
main effect and time by day interaction from the crossed design are re­
flected in the single time within day component for the nested design. 
Additionally, the error for the ncsted design lumps the information for 
three components into one component. Information from a nested G study 
design does not provide the information needed to accurately plan a crossed 
D study because separate estimates of several components do not exist. 
Table 5 shows how to use estimates from the crossed design in planning a 
D study having the nested design. The crossed design provides informa­
tion for a much broader array of possible 0 studies. However, estimates 
from the nested G study design will be more accurate for D studies having 
similar nesting of time within day. 

Reliability as an attribute of the data 

One implication of GT is that reliability is an attribute of the data, 
not of a given instrument or test (Thompson 1991,1992). Both G studies 
and 0 studies involve sampling to obtain observations which are used to 
estimate variance components. Estimates of variance components are 
known to be rather poor when relatively few conditions are sampled. 
Because of this sampling error, estimates, even of the same underlying 
reliability, will vary from one application of a design to another. Further­
more, it is seldom the case that two data sets estimate exactly the same 
reliability. Universes of generalization differ from one study (especially 
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Table 4 

Overview ofthe two facet sx(t:d) design with subject (s) as the object ofmea­
surement and day (d) and time (t) nested within day as facets. Each day, n, 
times are randomly sampled to give a total ofn,nd times. 

Number of Conditions Associated Variance 
Source Sampled Component 
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for studies by different investigators in different regions) to another - ei­
ther the population of interest changes or the range of viable facet condi­
tions changes so that the reliability calculated from one application of an 
instrument may not be an accurate estimate of the reliability for the next 
application of that instrument. Implicit facets change from one study to 
another. Something as simple as a change in an assistant administering a 
test or a change in the location at which a test is administered may cause 
a slight change in the reliability for the data being collected. Even the 
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Table 5 
UseofestimatesfromsxtxdGstudy (b:. b:. b~. b:,. b:d• b:d• b:) to plan ansx(t:d)D study. 
D study sample sizes may differ from original G study sample sizes. Denote D study sample size 

by n~ and n,'. 
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occasion or the time period during which a study is conducted is specific 
to that data set and in that sense, the reliability coefficient for that data is 
specific for that time period. 

D studies may generate large volumes of data at once or may gener­
ate information in a one-at-a-time fashion. For example, evaluation of 
health programs may provide an instance where many organizations are 
evaluated at once. In this case, D study data should be used to estimate 
the reliability of the D study measurements. For data generated in a one­
at-a-time fashion, this may be difficult. For example, for the individual 
monitoring their own BP, there may be advantages to their understanding 
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what G studies have to say about the dependability of BP measurements. 
Not only can they use G study information to determine how to obtain a 
reliable assessment of their BP, but, an understanding of what GT has to 
say about the variability inherent in the BP measurement process may 
give them the information they need to put a single high or low measure­
ment in perspective. 

Concluding Remarks 

The linear models machinery underlying GT provides a powerful 
and flexible framework for modeling a measurement situation. This frame­
work is much richer than the limited framework of CT and allows GT to 
consider dependability issues for both norm- and criterion-referenced 
measures, for measures involving multiple sources of error, and for ag­
gregate-level as well as individual-level measures. In addition, this tech­
nical machinery emphasizes the value of interpreting variance components 
to understand a measurement situation. We considered applying GT to 
some simple measurement situations. Reliabilities for measurements based 
on more complex measurement situations can be derived using linear 
models, variance components estimation, and appropriate interpretation 
of model components. 

We have not considered the technical details of variance compo­
nents estimation. While ANOVA estimators of variance components are 
frequently used, GT imposes no restriction on the mechanism used to 
estimate variance components and in some instances, other estimation 
methods may be preferable (Marcoulides, 1990; Shavelson and Webb, 
1981). Khuri and Sahai (1985) provide a comprehensive review of vari­
ance components analysis including point estimation of variance compo­
nents. Additionally, more advanced topics suggested by GT and its use of 
linear models include the use of regression estimates and confidence in­
tervals in estimating true universe scores as alternatives to simply using 
observed scores (Cronbach et aI., 1972), and multivariate generalizability 
allowing either the examination of the dependability of multiple scores 
simultaneously or the dependability of a composite score derived from 
multiple scores (Cronbach et aI., 1972; Shavelson and Webb, 1981). G 
study variance component estimates may also be used to consider design 
optimization problems such as minimizing the number of observations 
per subject to achieve a specific generalizability coefficient (Sanders et 
aI., 1989) or maximizing the coefficient of generalizability under resource 
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constraints (Marcoulides, 1997; Marcoulides and Goldstein, 1990; Sand­
ers et aI., 1991; Sanders, 1992). Other developments in GT appear in the 
literature including the possible link or integration of GT with validity 
theory (Kane, 1982; Shavelson and Webb, 1981). 

In addition to the linear models technical machinery, GT provides a 
conceptual and contextual framework that places emphasis on asking the 
right questions. These questions arise naturally because it is the responsi­
bility of the investigator to define the universes of admissibility and 
generalizability. Different universes of generalization have different uni­
verse-score variance, even when the procedure for obtaining a measure­
ment appears, superficially, to be the same. Cronbachet aJ. (1972) note 
that error is often underestimated because investigators sampled from a 
universe narrower than that referred to in their theory. GT properly ap­
plied should require the investigator to at least question and think about 
the implicit aspects of his univerSt;! definition and how those aspects im­
pact the interpretation and utility of variance component and reliability 
estimates. 

By combining the linear models technical machinery with a strong 
conceptual framework GT provides a useful set of tools for examining the 
reliability of measurements. The health practitioner can use GT to assess 
the dependability of both norm- and criterion-referenced measurements 
used to evaluate health promotion programs and behavioral measurements. 
An understanding of GT also allows health educators to interpret infor­
mation on the variability due to multiple sources of error from G studies 
of clinical measures. 
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In 1993 the Research and Development committee of the Board of Reg­
istry of the American Society of Clinical Pathologists (ASCP) began a 
ten year longitudinal study of medical technologist jobs and related is­
sues. The overall purpose was to follow a cohort of technologists from 
the year of certification across a ten year period, in order to better un­
derstand their job responsibilities and the social issues surrounding those 
responsibilities. 

The design strategy was a series of surveys, administered according 
to a prescribed plan during the ten year period of the study. The survey 
for the first year of data collection included a Job Responsibilities Scale 
(JRS) which was designed and field tested by the members of the Board 
of Registry Research and Development committee, a group that included 
both laboratory science and statistics professionals. The plan was to ad­
minister the IRS in 1993 and again in 1995. 

It was anticipated that the more complex job responsibilities would 
be performed more frequently by the participants as they acquired more 
experience as laboratory professionals. That is, an individual's personal 
level of job responsibility was expected to change over time. In order to 
measure this change, however, it was expected that the relationships among 
the tasks themselves would remain the same. Some tasks would be per­
formed more or less frequently over time but the relative level of respon­
sibility demanded on those tasks was not expected to change. These 
expectations are addressed in this paper through analyses conducted to 
determine the degree of item invariance on the JRS from 1993 to 1995. 

Method 

Sample 

A cohort of 2000 individuals who applied to take the 1993 certifica­
tion examination was selected to represent all routes of entry into the 
certification examination and, subsequently, the field of laboratory medi­
cine. All of the respondents had completed a bachelors degree and were 
qualified for the examination under an education or experience route. Most 
of the respondents had recently completed their degrees, and 1993 was 
their first year as a medical technologist. Of the original cohort, 1063 
complete surveys were available for the first year (1993). The same JRS 
was sent in 1995 but only 665 complete surveys were available for analy­
sis. Although the attrition was large, the samples are comparable from a 
demographic and geographic perspective. 
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Instrument 

The 30-item Job Responsibilities Scale was developed by the Board 
of Registry Research and Development committee which included labora­
tory science and research methodology experts. Respondents were asked 
to rate each item based on the frequency of performance during the calen­
dar year 1993 and 1995 respectively. The items on the JRS covered two 
major types of responsibilities including: 1) core job responsibilities which 
are tasks such as "perform routine and specialized lab tests," "correlate 
abnormal values with disease states," and "maintain confidentiality of re­
sults;" and 2) more advanced technical and management responsibilities 
including items such as "evaluate instruments for use in the lab," "train lab 
personnel," "establish technical procedures," "supervise personnel" and 
"supervise projects." In order to complete these responsibilities in the labo­
ratory, the technologist must have the requisite technical skills; a broad 
knowledge base; judgment, analytical decision making, and management 
skills; communication training; and professional experience. 

In 1993, the first administration, respondents were asked to rate each 
task based on the frequency it was performed on a 4 point rating scale: 
frequently =4 points, sometimes = 3 points, rarely = 2 points, and never = 
1 point. Frequency of task performance scores were the sum of the points 
from the rating scale for each of the job responsibilities. Exactly the same 
scale and directions were used at the second admin istration in 1995. Fur~ 
ther detail on the sample, instrument, and methodology may be found in 
Ludlow (in press). 

Results 

Comparison of 1993 and 1995 factor analysis solutions 

The same statistical procedures were carried out on both data sets. 
The Cronbach alpha was identical (a. =.88). Both determinants were non~ 
zero. Both Bartlett's test of sphericity were statistically significant. Both 
Kaiser-Meyer-Olkin measures of sampling adequacy were "marvelous" 
(>.90). The same common factor analyses were performed with varimax 
rotations, although oblique rotations did reveal correlations between the 
final factors. Finally, a two factor solution was accepted for each data set. 
The eigenvalues and percent of variance accounted for were practically 
identical (see Table 1), and the interpretation ofeach solution was the same. 

Figure 1 presents the two factor varimax plot for 1993. Factor I 
contains tasks of the nature: evaluate new instruments, purchase reagents, 
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FiKure 1. Varimax rotation for the two factor solution for 1993 

participate in research activities, train laboratory personnel, present lec­
tures, work on legislative activities, establish technical procedures, and 
supervise laboratory projects. This factor is labeled "advanced laboratory 
job responsibilities". 

Factor II is defined by tasks of the nature: collect and prepare speci­
mens, perform routine laboratory tasks, recognize a problem in quality 
control results, recognize normal and abnormal values, and maintain con­
fidentiality of test results. This factor is labeled "routine responsibilities". 

The two factor varimax plot for the 1995 data is presented in Figure 
2. The patterns for 1993 and 1995 are strikingly similar. Essentially the 
same responsibilities load highest on Factor 1 and Factor 2. 

The similarity between the two solutions is summarized in Table 1. 
The only tasks that shift their dominant factor loadings from 1993 to 1995 
are "Q34", "Q30", and "Q18". Q34 asks how often respondents partici­
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Figure 2. Varimax rotation for the two factor solution for 1995 

pated in continuing education. This question was associated with advanced 
responsibility tasks in 1993 but became somewhat more routine by 1995. 
In contrast, Q30 (communicate technical information to medical and lay 
persons) and Q18 (perform quality assurance activities) became more 
closely associated with advanced responsibility tasks by 1995. 

Cureton and D' Agostino (1983) suggest an index that is useful for 
comparing factors extracted from two data sets. Their coefficient of con­
gruence (CC) between comparable factors is 

L,1Il2 
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Table 1 

Varimax Solutions for the Job Responsibilities Scale: 1993 and 1995 

1993 1995 

ITEM ITEM FACTOR FACTOR FACTOR FACTOR 

NUM NAME 1 2 2 

23 Q37 .797 .070 .796 .049 
11 Q25 .783 .061 .728 .130 
21 Q35 .741 .064 .742 .045 
26 Q40 .690 .065 .754 -.006 

7 Q21 .660 .195 .657 .224 
6 Q20 .650 .210 .668 .176 

15 Q29 .642 .087 .609 .061 
14 Q28 .637 .137 .689 .099 
12 Q26 .605 -.069 .610 -.001 
18 Q32 .566 -.010 .607 .011 
25 Q39 .564 .114 .567 .026 
22 Q36 .540 .171 .526 034 
27 Q41 .532 .195 .502 .060 
17 Q31 .529 .217 .446 .276 
13 Q27 .526 .008 .485 -.018 
19 Q33 .498 -.022 .418 .008 
24 Q38 .422 .100 .474 .046 

8 Q22 .4\0 .223 .486 .192 
20 Q34 .311 .289 .206 .215 

28 Q42 -.052 .691 -.006 .694 
9 Q23 .245 .642 .187 .660 

10 Q24 .117 .588 .068 .648 
29 Q43 .085 .560 .089 .574 

5 QI9 .151 .557 .171 .591 
2 Q16 -.161 .432 -.293 .519 

30 Q44 -.067 .39& -.101 .238 
4 Q18 .229 .385 .309 .228 

16 Q30 .304 .372 .391 .275 
1 Q15 .065 .292 .069 .337 
3 QJ7 .193 .210 .156 .229 

Eigenvalue 7.67 2.4S 7.50 2.58 
% variance 25.60 8.20 25.00 8.60 

Note: Tasks in bold-face changed their dominant factor loading positions. 

where II and 12 are the corresponding rotated factor loadings from the two 
solutions. They suggest a guideline of CC >= .90. The CC for Factor 1 
was .93 and the CC for Factor 2 was .85. Certainly Factor 1 meets the 
criteria while Factor 2 reflects the previously discussed slight shift in fre­
quency of performance for a few tasks from 1993 to 1995. It seems rea­
sonable to expect that as the 10 year study progresses, more of these shifts 
will occur. 
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Comparison of1993 and 1995 Rasch IRT solutions 

The Rasch rating scale model (Wright and Masters, 1982, p. 49) 
was applied to these data. This model specifies the probability of person 
n responding in category x to item i as 

where x =0,1, ...m rating scale categories. 

With this model, a respondent's "level of responsibility attained" pa­
rameter (f3n)' a s-et of scoring category "frequency performed" parameters 
( 't'j). and an item's "level of responsibility required" parameter (8i ) are 
estimated. The 1993 solution is displayed as a "variable map" in Figure 3. 

The X's to the left ofthe~verticalline represent the individual medi­
cal technologist locations (f3) with regard to their overall level of re­
sponsibility on the JRS. Persons performing tasks requiring advanced 
levels of responsibility are located at the top of the map, persons with 
routine responsibilities are in the lower section. To the right of~the ver­
tical line are the locations of the job responsibility items (Dj ). The 
tasks requiring advanced levels of responsibility (Factor I) are in the 
upper region of the map while the routine tasks (Factor II) are in the 
lo~ver region. The mean level of responsibility for the technologists was 
(f3 = -.24). This indicated that these laboratory technologists. overall, 
perceived that the task responsibilities they performed most frequently 
were mostly of a routine nature. All estimates are reported in the logit 
metric (see Ludlow and Haley, 1995). 

The same rating scale analysis was performed upon the 1995 data. 
A statistical comparison of the two solutions reveals several similarities. 
The "person separation indices" were 2.7 (1993) and 2.8 (1995). The 
"item separation indices" were 28.9 (1993) and 21.7 (1995). The cat­
egory threshold estimates were i 1 = -0.54, i 2 = -0.22, i 3 = 0.76 (1993) 
and i l = -0.52 ,i2 = -0.15 ,i3 = 0.67 (1995). Finally, a visual compari­
son of Figure 3 and Figure 4 reveals similar distributions of person re­
sponsibility estimates and a similar hierarchical ordering to the tasks. 

The 1995 task estimates appear somewhat smoother in their distri­
bution. That smoothness is attributed to the fact that there is now a greater 
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Figure 3. VarIable map showmg posItIOns of people and tasks on the Job 
Responsibilities Scale for 1993. 
Note: When the score group positions are closer than one tenth of a logit score 

groups are combined: X=2 persons in this map. 
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range of tasks that the technologists are performing on a more regular 
basisl. This is particularly evident for the clusters of tasks located at about 
(1.5) and (-1.2) logits in 1993. By 1995 the tasks in those regions had 
become more clearly differentiated from one another because more tech­
nologists performed advanced tasks more frequently. 

'" The mean person estimate in 1995 is (f3= 0.01). This represents an 
increase in personal job responsibility that roughly corresponds to liter­
ally moving up the JRS from "preparing specimens" and "participating in 
continuing education" (1993) to "implementing new test procedures" and 
"evaluating computer data and problems" (1995). 

The worst fitting2 task in 1993 was Q15: collect and prepare speci­
mens. This task was again the worst fitting one in 1995. The interpreta­
tion for the misfit remains the same. There were numerous technologists 
with relatively high levels of responsibility who simply did not frequently 
perform this task. Unfortunately, from a Rasch perspective, these higher­
level technologists were expected to perform the task. 

Another way to investigate scale invarianee is to use the 1993 
task estimates as predictors of the 1995 estimates. A simple regression 
was performed and the results are presented in Figure 5. The regression is 
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Figure 5. Regression of 1995 item estimates on 1993 item estimates. 
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a near identity and the standardized regression coefficient (beta=.99) is as 
high as one could reasonably seek. 

The one obvious shift in the pairs of estimates lies in the upper right­
hand region of the figure3• This task is Q33: work with legislative activi­
ties. Even the few technologists who were surprisingly performing this 
activity in 1993 were no longer performing it as frequently during 1995. 
This task, both conceptually and statistically, is the furthest removed from 
routine laboratory tasks. 

Discussion 

The purpose of these analyses was to examine the extent to which 
the tasks of the JRS remained invariant from 1993 to 1995. Regardless of 
the approach taken to investigate this problem the results were consistent. 
The factor analyses revealed that the tasks were comprised of two sets of 
related laboratory activities: relatively routine versus advanced responsi­
bility tasks. The IRT analyses revealed a continuum progressing from the 
routine tasks upwards through advanced responsibility tasks as the tech­
nologists gained more experience. 

The overall career mobility pattern was [or technologists to increase 
the number of job responsibilities performed more frequently during the 
three year period. Although there are some specific exceptions, most 
technologists continued to perform the routine level responsibilities fre­
quently but also added the advanced technical and management responsi­
bilities to the list of more frequently performed tasks. Thus. the results 
indicate that individuals in this profession perform a core of responsibili­
ties that remains fairly consistent over time even while they add more 
complex or advanced responsibilities as they gain experience. However, 
other issues such as job changes, promotion, transfer, geographic moves, 
and hospital organizational characteristics all interact with how frequently 
medical technologists perform specific job responsibilities. 

Technologists have several alternative paths for advancement. They 
may continue to perform laboratory tests (e.g., blood glucose, PSA) for 
their entire careers, or they may choose to work toward a promotion which 
will yield more responsibility and the opportunity to assume more ad­
vanced responsibilities. The ramification of these choices is that some 
technologists are likely to continue to perform routine responsibilities 
during their entire careers. In fact, individuals who do achieve promotion 
do assume significantly more job responsibility for advanced manage­

http:beta=.99
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ment and technical responsibilities (Lunz, Harmening, and Castleberry, 
submitted), as well as continuing to perform some of the same routine job 
responsibilities. 

The results from this study are important from a practical measure­
ment perspective because a shift in the definition of the JRS would have 
confounded the interpretation of what it means to move upward in re­
sponsibility over the first 10 years in the career of a laboratory technolo­
gist. Furthermore, these results are heartening because they provide 
preliminary evidence that at the conclusion of the current 10 year pro­
spective study it should be possible to objectively define the first 10 years 
of the typical job mobility pattern to be expected of most entry-level medi­
cal technologists. 

Footnotes 

If the reader were to superimpose the two maps such that correspond­
ing logit estimates were aligned. then this spreading out of the 1993 clus­
ters would be even more obvious. 

2 Fit was computed using the variance-weighted t statistic of Wright 
and Masters (1982, p. 100). 

Although, the shift in item estimates appears dramatic in this plot, the 
standardized difference statistic z was only (-1.87) (Wright and Masters. 
1982, p. 115). 
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After a unit or course of study, teachers usually assess the acquisition of 
knowledge based on the endorsement of items on a test. These items are 
often placed on a test without the knowledge of their true difficulty or 
function within different subgroups. It is also thought that the items are 
content specific and measure a single dimension or construct validly. We 
know that when a person responds to an item, that response is influenced 
by characteristics of the person that is independent of the items, and that 
the items possess certain qualities that are independent of the person. Given 
the diverse nature of individuals in a classroom, the accuracy of measure­
ment is tantamount to understanding item function with the diverse na­
ture of individual differences. This study investigated the effects of 
guessing on Rasch item fit statistics (weighted total, unweighted total, 
and unweighted between fit statistics) and the Logit Residual Index (LRI) 
as the probability of guessing the correct answer increased (0%,25%, and 
50%) and the usefulness of these statistics when applied to data from 
simulated teacher-made tests. 

It has been shown that the Rasch model allows for the accurate mea­
surements of individual differences on a true linear scale (Rasch, 19601 
1980). No other mathematical model allows for the independent estima­
tion of person ability measures and item difficulty calibrations (Ander­
son, 1973; Bamdorff-Nielsen, 1978; Rasch, 1961; Wright and Stone, 1979). 
The logistic function in the Rasch model provides for both linearity of 
scale and generality of measure (Wright & Stone, 1979). Georg Rasch 
called this particular characteristic "specific objectivity." Therefore, ac­
curate estimates of person ability and item difficulties are possible, yet 
measurement disturbances must be identified and taken into consideration. 

Measurement Disturbances 

Measurement disturbances are conditions that interfere with the 
measurement of some underlying psychological construct. Thorndike 
(1949) developed a list of possible disturbances to the measurement pro­
cess. Smith (1985) later classified measurement disturbances into three 
general categories: (a) disturbances that are the results of characteristics 
of the person that are independent of the items, (b) disturbances that arc 
the interaction between the characteristics of the person and the proper­
ties of the items, and (c) disturbances that are the results of the properties 
of the items that are independent of the characteristics of the person. The 
classification of measurement disturbances is important in that the source 
of the measurement disturbance dictates the techniques necessary to de­
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tect its presence. Disturbances that are characteristics of the person and 
independent of the items include, but are not limited to (a) start-up, (b) 
plodding, (c) cheating, (d) illness, (e) boredom, and (f) fatigue. Measure­
ment disturbances associated with the interaction of the person and the 
properties of the items are (a) guessing, (b) item content, (c) item type, 
and (d) item bias. With the Rasch model, only two conditions determine 
the outcome of the interaction between the person and any item on a test: 
(a) the amount of the trait possessed by the person, and (b) the amount of 
the trait necessary to provide a certain response to a given stimulus (Smith, 
1991a). These conditions are commonly referred to as person ability and 
item difficulty. Any other conditions that influence outcomes are consid­
ered measurement disturbances. Glaser (1949, 1952) and Mosier (1941) 
felt that a person would exhibit consistently correct answers to relatively 
easy items, consistently incorrect responses to difficult items, and incon­
sistent responses to items centered on their ability level. Since inconsis­
tent responses could be associated with measurement disturbances, 
Thurstone and Chave (1929) believed that some criterion should be es­
tablished so that inconsistent responses could be eliminated. 

Rasch Fit Statistics and the Log;t Residual Index (LRI) 

Rasch parameter estimates were found to be consistent, efficient, 
sufficient, and unbiased (Anderson, 1973; Andrich, 1988; Habermann, 
1977; Wright, 1977; Wright & Stone, 1979). Consequently, analysis of 
fit for the entire response matrix does not require additional information 
beyond the item difficulties and person responses. This allows for the 
creation of subgroups (persons) that can be used to test the invariance of 
the item difficulty parameters and/or differences across subgroups. The 
interpretation of the outcomes becomes more useful when the observed 
fit statistics are based on some characteristics of the persons (age, gender, 
native language, or ethnic origin). Smith (1988b) performed several simu­
lations to assess the distributional properties of the weighted and 
unweighted item between fit statistics. These simulations involved 10 
replications of 1,000 persons taking a 20-item test, with the item difficul­
ties uniformly distributed from -1 to +1 logits. The results showed that, 
as the number of ability groups increased, the mean and standard devia­
tion of the transformed fit values approached the hypothesized values of 
0,1. Additional simulations studied the effect of increasing the number of 
persons and number of items, varying the dispersion of item difficulties, 
and varying the offset between the mean of the item and person distribu­
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tions. The results indicated that, within the ranges studied, varying these 
factors had little effect on the distribution of the transformed fit values. 
Thus, there appears to be no reason to develop correction factors such as 
those developed for the weighted and unweighted total fit statistic to cor­
rect for the influence of these factors on the distribution and Type I error 
rate of the item between fit statistics (Smith 1991b). 

Smith (1988a, 1991 b) and Smith and Hedges (1982) also studied the 
power of the total and between item fit statistics to detect two types of 
measurement disturbances, item bias and guessing. These studies found 
that the weighted total, unweighted total, and un weighted between fit sta­
tistics were capable of detecting different types of measurement distur­
bances. The between fit statistic was more efficient at detecting item bias 
than either the unweighted or weighted total fit statistic. The unweighted 
and weighted total fit statistics were more sensitive to disturbances such 
as guessing and start-up. The primary diffcrence between the two statis­
tics is that the unweighted version is based on the sum of the standardized 
residuals, whereas the weighted version is based on the sum of the stan­
dardized residuals that have been weighted by the information function. 

IPARM (Item and Person Analysis with the Rasch Model), a com­
puter software program introduced by Smith (1991 b) performs Rasch item 
and person analyses from dichotomous and rating scale data. The major 
advantage of the program is that it constructs between fit statistics based 
on characteristics of the persons for item analysis and properties of the 
items for person analysis. It also provides between fit statistics (unweighted 
version) for biographical sub-popUlations. When demographic data are 
used in the analysis to create subgroups (sex, race, and age), the resulting 
statistics will give an indication of the presence of bias, or differential 
item familiarity in the response patterns for the items. Thc software first 
calculates the item mean squares associated with each Rasch fit statistic, 
then converts them to their unit normal fit statistic with the following 
cube root transformation; 

where V, the mean square, and S, the standard deviation, are the values 
associated with the mean square under consideration (Smith, 1991 b; Wright 
and Masters, 1982). The resulting Rasch item fit statistics have expected 
values of mean =0 and standard deviation =1. 
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The weighted mean square item (WMS) is calculated as, 

N 

L(Xn- Pn)2 
WMS. = ..:..:.n==I--:-:--__ 

I N 

LWn 
n=1 

where Pn is the probability of a correct answer (predicted response) that 
can be calculated as 

P .. _ exp(bj - di) 
I) - . • 

1+exp(bj - di) 

where hj is the ability measure for persons in score group j, d; is the item 
difficulty (Smith, 1991 b, p. 153) and W, the weighting function, can he 
calculated as 

W = [P(l- P)] . 

The standard deviation associated with the weighted total mean 
square can be caiculated as 

The unweighted mean square item (VMS) is defined as 

where N is the number of persons, X is the observed response, and P is 
" n 

the response predicted from the logit difficulty of the item and the log it 
ability of the person. The standard deviation of the unweightcd total mean 
square item can be found as 
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[±_1_4N]1I2 
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N 

The un weighted between mean square item (DBMS) is defined as 

DBMS, = 
I 

where J is the number of score groups, Nj is the number ofpersons in each 
score group, XII is the observed response for person n, and Pn is the pre­
dicted response for person v. The unweighted between fit standard devia­
tion can be approximated by 

~ ]112[s[MS(UB)i] = (J ~ 1) (where J = the number of score groups), 

The Logit Residual Index (LRI) is a measure of how far an item 
characteristic curve (ICC) for an individual item deviates (flatness or 
steepness) from the common ICC fitted for all items (Mead, 1976), It 
also indicates the linear trend in the residuals for each item, It can be 
calculated as 

N

L (Yn; - Yi)(bn - di) 
LRI = -"n::..:=I_:-:--_____ 

, N 


L(bn - d;)2 

n-I 

where dj is the difficulty of the item, bn is the ability of the person, and N 
is the number of persons; where Y 

m 
. is the standardized residual calculated 

as: 

v . _ (Xni - Pni) 
Lm -

Pni(1- Pni) , 
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with X . the observed response and P . the predicted response. 
ill ill 

Items with LRI values greater than zero will have an item character­
istic curve (ICC) that is steeper than the modeled curve, and items with 
values less than zero will have an ICC that is flatter than the modeled 
curve. Negative LRI values indicate that low-ability groups should have 
positive residuals and high-ability groups should have negative residuals. 
This indicates that low-ability persons performed better than expected 
and high-ability persons performed less well than expected. Positive LRI 
values indicate that low-ability groups should have negative residuals and 
high-ability groups should have positive residuals. That is, high-ability 
persons performed better than expected and low-ability persons performed 
less well than expected. Items with negative total fit statistics tcnd to 
have steeper observed ICCs than predicted, indicating an overfit to the 
model. and items with positive total fit statistics tend to have flatter ob­
served ICCs than predicted, indicating an underfit to the model. 

Methods 

Simulated Data Sets 

Data sets were generated using SIMTEST version 2.1, a software 
program developed by Luppescu (1992) for simulating dichotomous test 
data. Six tests were simulated, three tests with normally distributed item 
difficulties and three tests with uniformly distributed item difficulties. 
The parameters used to simulate the normally distributed data sets were 
(a) a mean person ability of 1; (b) a standard deviation of 2; (c) a slope of 
1; (d) 100 items; (e) 100 persons, and (f) three levels of guessing [no 
guessing (0%), 25%, and 50%]. For the uniformly distributed data sets, 
the parameters were (a) a mean person ability of 1; (b) a standard devia­
tion of 1; (c) a slope of 1, (d) 100 items, (e) 100 persons, and (f) three 
levels of guessing [no guessing (0%), 25%, and 50%]. A BIGSTEPS 
(Wright and Linacre, 1992) control program was written to read the di­
chotomous data and output a data file containing item and person param­
eters to be read by IPARM (Smith, 1991 a) which output a data file 
containing Rasch item fit statistics and LRI values. 

Analysis 

An analysis of variance (ANOVA) followed by a Scheffe mean 
pairwise comparison at the .05 level of significance were used to deter­
mine if guessing had an effect on the mean item scores and mean item fit 
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statistics by levels of guessing (0%,25% and 50%) for each distribution 
type. To determine if the levels of guessing had an effect on the mean 
item scores for the distribution types (normal and uniform), mean pairwise 
comparisons were made between the mean item scores at the same level 
of guessing. To determine if the level of guessing had an effect on the 
mean item fit statistic for each distribution type, mean pairwise compari­
sons were made between the mean item fit statistics at the same level of 
guessing. An observation of the change (positive Inegative) in LRI val­
ues associated with misfitting items detected by each item fit statistic 
(weighted total, un weighted total, and unweighted between) was used to 
determine the effects of guessing on the LRI. 

Results 

Mean item score and item fit statistics by levels of guessing for 
normally distributed item difficulties are in Table 1. Mean item score and 
item fit statistics by levels of guessing for uniformly distributed item dif­
ficulties are in Table 2. 
Table 1 
Mean Item Score and Item Fit Statistics by Levels of Guessing for Normally 
Distributed Item Difficulties 

Item Fit Statistics 

Item Score UnWt. Total Wt. total Between 

Test % Guessing Mean S.D. Mean S.D. Mean S.D. Mean S,D, 

0 .63 .27 .07 .75 .05 .60 .01 .95 

2 25 ,64 .28 .08 .99 -.02 ,86 .22 .97 

3 50 ,63 .29 .08 .69 .01 ,58 .00 .83 

Table 2 
Mean Item Score and Item Fit Statistics by Levels of Guessing for Uniformly 
Distributed Item Difficulties 

Item Fit Statistics 

Item Seore UnWt. Total Wt. total Between 

Test % Guessing Mean S,D. Mean S.D. Mean S.D. Mean S.D. 

4 0 .68 .11 .07 .86 -.02 .76 -,04 .80 

5 25 .67 .11 .00 .84 .02 .90 .08 .90 

6 50 .73 .10 .02 .75 .03 .59 .04 .86 
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No significant differences were found at the .05 level between 
the mean item scores or the mean item fit statistics (un weighted total, 
weighted total, and unweighted between fit statistics) by the levels of 
guessing for tests constructed with normally distributed item difficulties 
(F=.003, dfo=2,297 - item score; F=.010; dfo=2,297 - unweighted total; 
F=.186, dJ=2,297 - weighted total; and F=1.80, dJ=2,297 - unweighted 
between fit, respectively). A significant difference at the .05 level was 
observed between mean item scores for tests constructed with uniformly 
distributed item difficulties (F=8.45, dfo=2,297), but not for the item fit 
statistics (F=.162, dJ=2,297 - unweighted total; F=.149, dJ=2,297 ­
weighted total; F=.508, dfo=2,297 - unweighted between fit, respectively). 
A Scheffe mean pairwise comparison indicated that the mean item scores 
at the 50% level of guessing were significantly different from those ob­
served at the 0% and 250/0 levels (Table 3). 

Table 3 
Scheffe pairwise comparisons/or mean item scores (uniform distribution) 

Leve1lMean N S.D. df t Sig. 

0% =.68 100 11 198 .773 .440 

25% = .67 100 11 

0% =.68 100 11 198 -3.160 .002 

50% =.73 100 10 

25% = .67 100 11 198 -3.966 .000 

50% =.73 100 10 

Misfitting Items and the Logit Residual Index (LRI) 

A summary of misfitting items and associated fit statistics is pre­
sented in Table 4. Seven items (two at 0%, and five at 25%) were de­
tected as misfitting on tests constructed with normally distributed item 
difficulties. The logit item difficulties ranged from -4.37 (very easy) to 
1.46 (fairly difficult). For the tests constructed with unifonnly distrib­
uted item difficulties, 12 items were detected as misfitting (4 at 4%, 5 at 
25% and 3 at 50%). The logit item difficulties for these items ranged 
from -1.15 to .96. The majority of misfitting items were detected by the 
unweighted total fit statistic. 
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Table 4 
Summary ofMisfitting Item Statistics for each Test 

Logit Point. Unwt. Wt. Abilitly Mean Logit 
Item item Bis. Total Total between item Residual 

# diff. COlT. fit fit fit score Index 

Test 1 
3 -4.37 -0.09 1.98 0.38 2.70 0.99 -0.26 
36 -0.80 0.36 0.94 0.32 2.14 0.80 -0.10 

Test 2 
51 0.15 0.27 2.47 1.33 1.36 0.64 -0.67 
66 0.41 0.23 2.64 2.20 1.28 0.59 -0.76 
72 1.36 0.38 0.40 0.84 2.09 0.40 -0.06 
75 1.36 0.60 -2.03 -2.01 -2.01 0.40 0.43 
!:l4 1.46 0.66 -2.72 -2.96 2.60 0.38 0.50 

Test 3 
None 

Test 4 
11 -1.15 0.26 2.22 0.53 0.66 0.85 -0.41 
52 0.01 0.26 1.40 1.97 2.36 0.69 -0.27 
67 0.34 0.29 3.21 1.50 0.99 0.63 -1.06 
76 0.23 0.39 2.20 0.43 -0.04 0.65 -0.77 

Test 5 
49 0.25 0.29 1.54 1.66 2.21 0.63 -0.34 
76 0.76 0.26 1.62 2.49 1.92 0.53 -0.36 
86 0.91 0.31 2.09 1.49 -0.08 0.50 -0.64 
90 0.86 0.29 2.13 1.70 0.26 0.51 -0.67 
99 0.96 0.26 1.73 2.40 2.40 0.49 -0.42 

'lest 6 
16 -0.63 0.20 2.16 0.56 0.06 0.83 -0.36 
86 0.76 0.26 1.05 1.74 2.78 0.60 -0.20 
89 0.76 0.36 2.10 -0.01 -0.19 0.60 -0.75 

Note: 	 Test I (0 % guessing, normally distributed item difficulties) 
Test 2 (25% guessing, normally distributed item difficulties) 
Test 3 (50% guessing, normally distributed item difficulties) 
Test 4 (0% guessing, uniformly distributed item difficulties) 
Te~l 5 (25% guessing, uniformly distributed ilem difficulties) 
Test 6 (50% guessing, uniformly distributed item difficulties) 

Guessing had an indirect effect on the LRI. The LRI statistic was 
sensitive to the high positive misfit values associated with the unweighted 
total fit statistic than to similar values associated with the other item fit 
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statistics. The greatest magnitude of change was observed when the 
unweighted total fit statistic misfit value was highly positive (> 2.4) pro­
ducing a negative LRI value (flatter ICCs than model curve). This indi­
cates that low-ability persons performed better than expected and 
high-ability persons performed less well. Since only two ability groups 
were used in the analysis, interpretation of the results were made rela­
tivelyeasy. All fit statistics with positive misfit values produced negative 
LRI values and those with negative misfit values produced positive LRI 
values. 

Conclusions 

As the levels of guessing increased, no significant differences were 
found between mean item fit statistics (unweighted total, weighted total, 
and unweighted between fit statistics) for each distribution type (normal 
and uniform). The mean item scores by levels of guessing were signifi­
cantly different at the .05 level for tests constructed with uniformly dis­
tributed item difficulties, but not normally distributed item difficulties. 

It was hypothesized that as the level of guessing increased, the mean 
item score would increase. This hypothesis held true for tests with uni­
formly distributed item difficulty distributions, but was not different for 
tests constructed with normally distributed item difficulties. This finding 
indicated that tests constructed with a wide range of itt!m difficultit!s (Le., 
normal distribution) tend to stabilize the effects of guessing on the mean 
item score. However, for tests constructed with a narrow range of diffi­
culties (i.e., uniform distribution), relatively high ability persons tended 
to consistently guess the correct answer as the probability level increased. 
This was especially evident when the logit item difficulties were centered 
on the mean logit ability. 

The unweighted total fit statistic was more sensitive to item misfit 
problems farther away from the mean ability used to simulate the data. 
These items tended to be either very easy or very difficult. The weighted 
total fit statistic was more sensitive to item misfit problems centered on 
the mean ability used to simulate the data. The number of items detected 
by the between fit statistic increased as the probability of guessing in­
creased. The between fit statistic was therefore more sensitive to item 
familiarity bias induced by the increased probability of guessing the cor­
rect answer. Detected items were functioning quite differently among the 
two ability groups (high ability and low ability) used in the analyses. These 
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findings indicated that the between fit statistic when applied to a teacher 
made test, can be a quick and useful tool for item analysis and test con­
struction. 

The LRI was sensitive to changes in the item misfit value associated 
with the un weighted total fit statistic. High positive item misfit values 
associated with the unweighted total fit statistic produced a greater change 
(negative) in the LRI value than similar item misfit values associated with 
the other Rasch item fit statistics. The usefulness of the LRI lies in the 
fact that it can identify the linear trend in the residuals for each item by 
demographiclbiographical characteristics. This permits quick identifica­
tion of differential item functioning among subgroups. Therefore, in an 
effort to obtain an accurate measurement of individual differences, the 
LRI appears to be an essential tool for item analysis and test construction. 
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Most calibration programs designed for the family of Rasch psychomet­
ric models report the asymptotic standard errors for person and item esti­
mates resulting from the calibration process. Although these estimates 
may be theoretically correct, they can be influenced by any number of 
factors, such as restrictions due to the loss of degrees of freedom in the 
estimation process (sample size), offset between the person and item mea­
sures, and the presence of misfit in the data. These influences have not 
been previously investigated. There are two sets of standard errors re­
ported, those for item difficulty and those for person ability estimates. 
This study is limited to standard errors associated with the estimation of 
person ability in the dichotomous model. 

The general asymptotic standard error (SE) for a person with ability 
b that corresponds to raw score r in the general Rasch model (Wright and 
Masters, 1982) is given by: 

0) 

where L is the number of items, m; is the number of steps in item i. and Prik 

is the probability of a person with a score r responding in category k to 
item i. In the dichotomous model (Wright and Stone, 1979) this simpli­
fies to: 

(2) 

where Pri is the probability that a person with raw score r answers item i 
correctly. 

One of the most frequently used Rasch calibration programs, 
BIGSTEPS (Wright and Linacre, 1992) contains a command that allows 
the user to modify the asymptotic standard errors based on the amount of 
misfit present in that person's response pattern. This correction increases 
the standard error for persons whose INFIT mean square departs from the 
expected value of 1.0 The rules for this correction and a computational 
example are shown in Table 1. 
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Table 1 

BIGSTEPS Standard Error Adjustments 

Using REALSE= Y 

If INFIT Mean Square>1.0 then SEr =(lNFIT MNSQ)Y' (SE) 

If INFIT Mean Square <1.0 then SEr = (INFIT MNSQ)-V, (SE) 

For example, if INFIT MNSQ = 1.41 and SE =0.59 then SEr = 
(1.41)\12(0.59) = .70 

The FACETS program (Linacre and Wright, 1993) also contains a 
control statement that can be used to select either asymptotic or enlarged 
standard errors. The term enlarged refers to the use of the person or item 
mean square to adjust asymptotic standard error for the presence of misfit 
in the response data. 

The purpose of this study is to examine empirically, through the use 
of simulated data that fit the dichotomous Rasch model, the relationship 
between the reported asymptotic standard errors for person ability mea­
sures and the observed standard deviation of estimated ability of simu­
lated persons with the same generating ability. The magnitude of the 
systematic difference between the asymptotic values and the observed 
values and possible corrections are reported. Finally, the effect ofmisfitting 
data caused by guessing when the correct answer is not known, on the 
observed standard deviations of the person ability estimates were exam­
ined and the appropriateness of the INFIT correction currently used in 
BIGSTEPS and FACETS was evaluated. 

Methods 

Simulated data generated to fit the dichotomous Rasch model were 
used in this study to determine the empirical standard deviation of esti­
mated person ability in samples with identical generating ability within 
each sample. It may seem restricting to limit each simulation to a single 
ability, but the nature of the design, comparing the mean asymptotic stan­
dard error to the observed standard deviation of the estimated ability, re­
quires this type of restriction. The effect on different abilities was 
investigated by varying the generating person ability in different samples. 
The simulations were limited to a five test lengths (five, ten, twenty, forty, 
and eighty item tests). (See Table 2 for a description of all of the simu­

http:1.41)\12(0.59
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lated data sets.) One thousand persons were used in each simulation. The 
generating abilities used in the study were limited to nine values that ranged 
from -2.5 logits to 1.5 logits in 0.5 logit steps. The item difficulty distribu­
tion used in each simulation was uniform and covered the range from -2.0 
to +2.0 logits, in O.2logit steps, except in the case were there were 10 or 

Table 2 
Simulation Summmy Information 

Number of Items 5, 10, 20. 40, 80 
Dichotomous Model 
1000 simulated persons per ability 
Uniform Distribution of item difficulty (-2.0 to +2.0, shown below for 20 items) 
Ten replications of each condition 
Eight fitting data conditions (-2.0 to +1.5 logit generating abilities) for all test 

lengths 
Seven guessing data conditions (-2.5 to +0.510git generating abilities) only for a 

20 item test 
Six combined (fitting and guessing) data sets (n=2000, ,2.0 to +0.51ogit generat­

ing ahilities) only for a 20 item test 

Possible Values: 
Item Difficulty Person Ability 

2.0 -2.5 
1.8 -2.0 
1.6 -1.5 
l.4 -1.0 
1.2 -0.5 
1.0 0.0 
0.8 0.5 
0.6 1.0 
0.4 1.5 
0.2 

-0.2 
-0.4 
-0.6 
-0.8 
-1.0 
-1.2 
-1.4 
-1.6 
-1.8 
-2.0 
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Item 
Diff. 0.5 0.0 -1.5 -2.0 
2.0 x x x x x x x 
1.8 x x x x x x x 
1.6 x x x x x x x 
1.4 x x x x x x 
1.2 x x x x x x 
1.0 x x x x x 
0.8 x x x x x 
0.6 x x x x x 
0.4 x x x x 
0.2 x x x x 
-0.2 x x x 
-0.4 x x x 
-0.6 x x 
-0.8 x x 
-1.0 x 
-1.2 x 
-1.4 x 
-1.6 
-1.8 
-2.0 

Person Ability 

fewer items. For ten or fewer items, the items were uniformly spread 
across the -2.0 to +2.0 range in larger steps. The results reported repre­
sent the average of ten replications for each combination of generating 
ability and test length. Results are reported for eight levels of person 
ability across the five test lengths when the data fit the model. In the 
guessing simulations seven levels of person ability were used with a single 
test length, twenty items. 

In the guessing simulations, guessing was introduced by setting the 
probability of a correct response equal to 0.25 (the probability of ran­
domly guessing correctly on a four-choice item) whenever the modeled 
probability was lower than 0.25. Depending on the person ability used in 
the simulations this would result in guessing on between 3 and 17 of the 

Table 3 
Guessing When Not Known (lfp<.25 then p=.2S) 

Guessing 
Items 0 3 5 8 10 12 14 17 
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20 items. For example, if the persons were at a generating ability of 0.0 
logits, there would be guessing on the five items with a difficulty higher 
than 1.210gits. For persons with a generating ability of -2.0 there would 
be guessing on the 14 items with a difficulty of -0.810gits or higher. The 
item difficulties with possible distortion due to guessing are listed in Table 
3 for the seven guessing data sets. 

The simulated responses were calibrated with the BIGSTEPS pro­
gram. The mean and standard deviation of the estimated standard errors 
and the mean and standard deviation of the· estimated abilities were then 
compared to determine if the asymptotic standard errors reported by the 
program were accurate. The SDISE ratio was used to evaluate the agree­
ment between the mean asymptotic standard errors reported for the esti­
mated person measures and the observed standard deviation of the estimated 
person ability measures. In this ratio SD represents the standard deviation 
of the estimated measures for the 1000 persons simulated to have the same 
ability. SE represents the mean asymptotic standard error reported for these 
estimated measures. Values greater than 1.00 indicate that, on the average, 
the observed standard deviation of the estimated measures for the 1000 
persons was greater than the average asymptotic standard error reported for 
the estimated measures of those persons. A value greater than 1.00 sug­
gests that the asymptotic standard errors underestimates the dispersion of 
the persons due to the errors of estimation. 

Results 

For the simulations with five item tests over five different person 
generating abilities (-1.0 to +1.0) , the average SDISE ratio was 1.093. 
The full range of person abilities was not used in these simulations due to 
the frequency of zero and perfect scores for the extreme generating per­
son abilities. For the simulations with ten item tests over seven different 
generating abilities (-1.5 to + 1.5), the average SDISE ratio was 1.054. For 
the simulations with twenty item tests over eight generating abilities (-2.0 
to +] .5), the average SDISE ratio was 1.037. One additional person abil­
ity was added to match the guessing simulations reported later. For the 
simulations with forty item tests over seven generating abilities (-1.5 to 
+1.5), the average SDiSE ratio was 1.011. For the simulations with eighty 
item tests over seven generating abilities (-1.5 to + 1.5), the average SDI 
SE ratio was 1.007. A graph showing the SDISE ratio for all of the values 
reported above is found in Figure 1. A pair of reference lines are shown 
at 1.02 and 0.98 to provide a frame of reference. 
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There is an obvious progression in the SDISE ratio based on the 
number of items on the test. The underestimation of the standard error of 
the ability estimate is closely approximated by the function (2L1(2L-1», 
where L is the number of items, which would yield corrections of 1.11 for 
the five item tests, 1.053 for the ten item tests, 1.026 for the twenty item 
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tests, 1.013 for the forty item tests and 1.0006 for the eighty item tests. 
Using the corrections (2U(2L-l» to increase the value of the estimated 
asymptotic standard errors would yield a SDISE ratio of approximately 
1.0, with all of the observed ratios falling in the range of 0.98 to 1.02. 
The results for the corrected SDISE ratios are shown in Figure 2. The 
only exceptions are the cases where the number of perfect and zero scores 
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Figure 3. Ratio of observed SD to mean SE - simulated fitting data 
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in the data increase, as with the 5 item test, so that the pseudo-ability 
estimates assigned to the persons with zero or perfect raw scores cause 
the observed standard deviation to be artificially high. There appears to 
be no systematic bias introduced by the offset between the mean item 
difficulty and the generating person ability. 
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Figure 5. Ratio of observed SD to mean SE - combined data 
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The results of the guessing simulations indicated that the presence 
of guessing in the data decreased the mean asymptotic estimates of the 
standard errors. This is as expected due to the fact that the guessing in­
creased the estimated person measures, moving it closer to the center of 
the item difficulty distribution and decreasing the asymptotic standard 
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FiKure 7. Mean person INFLT statistic -simulated guessing data 
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Figure 8. Change in mean person measure - simulated guessing data 
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error. For the -1.5 logit generating ability simulations, the mean asymp­
totic SE for the 10 fitting simulations was 0.62 while the mean person 
measure SD was 0.644. For the 10 -1.5 logit generating ability simula­
tions with guessing, the mean asymptotic SE was 0.57 while the mean 
person measure SD was 0.658. The presence of simulated guessing re­
duced the mean asymptotic SE while slightly increasing the standard de-
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Figure 9. Person ability distribution - fitting data 
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Figure 10. Person ability distribution - simulated guessing data 
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viation of the estimated person measures. Thus the SDISE ratios were 
higher for the guessing data sets then for the fitted data sets. To illustrate 
this point, the mean SDISE ratios for fitting data are shown in Figure 3, 
while the mean (over 10 replications) SDISE ratios for the guessing data 
are shown in Figure 4. For the guessing data alone the SDISE ratio varied 
between 1.17 and 1.03. This was considerably higher that the average 
SDISE ratio reported for the fitted data on the twenty item test (1.037). 

There is a clear relationship between the amount of guessing present 
in the data and the size of the SDISE ratio as seen in Figure 4. As the 
proportion of guessing data decreased, moving from a generating ability 
of -2.5 log its to an ability of 0.5 Iogits, the size of the SDISE ratios also 
decreased. If the mean INFIT value for these persons is uscd to modify 
the asymptotic standard error as shown in Table 1, the SDISE ratios return 
to approximately that found with the fitted data sets. 

When the fitted data and the guessing data were combined in a single 
analysis for each ability level to represent the case where the sample had a 
mixture of guessing and fitted data (n=2oo0, with 10 replications), there 
was a further increase in the SDISE ratio. These results are shown in Figure 
5. In these analysis the SDISE ratios ranged from 1.25, for the -2.00 gener­
ating ability set, down to 1.04, for the 0.5 generating ability set. As in the 
guessing analysis there was a clear trend suggesting that as the proportion 
of guessing in the data increased, the SD/SE ratio increased. The use of the 
BIGSTEPS INFIT correction in this case reduced the SDISE ratio, but not 
back to the level found in the fitting data. 

The amount of misfit in the guessing simulations can be seen in 
Figures 6 and 7. The mean person INFIT (weighted) and OUTFIT 
(unweighted) person fit statistics (standardized using the cube root trans­
formation of the mean squares) by generating ability. As the generating 
ability increases and the resulting targeting of the items on the person 
improves, reducing guessing, there is a lower mean fit statistic. The ex­
pected value of this statistic when the data fit the model is 0.00. Interest­
ingly, as the proportion of guessing increases, the mean values for the 
INFIT and OUTFIT diverge, with the OUTFIT values increasing more 
rapidly than the INFIT values. This indicates that the OUTFIT statistic is 
slightly more sensitive to the guessing simulated in the data. 

The effect of the presence of guessing on the estimated person abili­
ties can be seen in Figure 8. As the amount of guessing increases, the 
estimated mean person abilities are increasingly higher then the generat­
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ing values. The shift in the distribution results not only in an increased 
mean of the sample, but a shift in the skewness of the distribution. This 
difference can be seen by comparing Figures 9 and 10 (These graphs are 
based on a single fitted and guessing simulation with a generating person 
measure of -2.0). There was a pronounced negative skew to the guessing 
data shown in Figure 10. It is interesting to note the underestimate of 
person ability in the fitting data shown in Figure 9. In this case the gener­
ating value was -2.0. While mean estimated person measure was -2.16. 
This is the result of the number of zero scores, represented by the block of 
persons with an estimated ability of -4.5, who were arbitrarily assigned a 
measure since there is no true ability estimate for zero raw scores. 

Conclusions 

These results apply only to the unconditional estimation procedure 
used in BIGSTEPS as applied to dichotomous data. The asymptotic stan­
dard errors reported by most programs are usually thought of as a lower 
bound for the standard error. But it seems counter productive to report a 
number that is known to be smaller than it actually is. If classification 
decisions are based on a measure ±2 standard errors, then the person stan­
dard error used to make a decision should reflect the best estimate for that 
situation, not the lowest value that standard error value could take. It can 
be argued that this might make a small difference, but the change of a 
single raw score point on a high stakes examination can be very important 
to the examinees who fail using one standard error and pass using an­
other. 

These results highlight two problems. First, the asymptotic stan­
dard errors currently reported in BIGSTEPS underestimate the true varia­
tion in persons generated to have the same ability by a factor of (2L! 
(2L-1». This bias may be the result of the ueON bias correction (L-1)/L 
option available in BIGSTEPS (Wright and Douglas, 1997). This correc­
tion was used in the estimation of the item difficulties from the simulated 
data. With longer tests this underestimation may not be of practical im­
portance, but with shorter tests it may pose problems. A correction such 
as this could easily be built into the estimation program. Second, the 
presence of guessing in the response patterns causes further underestima­
tion of the asymptotic standard errors. This underestimation is further 
increased when there is a mixture of fitting and misfitting response pat­
terns. It seems reasonable to use a correction for the asymptotic standard 
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error based on one of the person fit indices that are calculated after the 
calibration. The choice of fit indices to correct the estimates of the as­
ymptotic standard errors is important. There is a difference in the mean 
INFIT and OUTFIT statistics for the simulated guessing data. The differ­
ences increase markedly as the amount of guessing increases. The mean 
outfit for the -2.00 sample was 1.95, whereas the INFIT mean for the 
same sample was 1.55. For the 0.50 logit ability sample the means are 
approximately equal. The use of the person INFIT or OUTFIT statistic 
for the asymptotic standard error correction in BIGSTEPS can result in 
different corrections depending upon the amount of guessing present in 
the response pattern. These simulations results suggest that a correction 
for misfit based on the OUTFIT statistic would yield corrected asymp­
totic standard errors that are closer to the standard deviation of simulated 
cases with the same generating person ability. 
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